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Abstract

Advances in structural genomics and protein structure prediction require the design of automatic, fast,
objective, and well benchmarked methods capable of comparing and assessing the similarity of low-
resolution three-dimensional structures, via experimental or theoretical approaches. Here, a new method for
sequence-independent structural alignment is presented that allows comparison of an experimental protein
structure with an arbitrary low-resolution protein tertiary model. The heuristic algorithm is given and then
used to show that it can describe random structural alignments of proteins with different folds with good
accuracy by an extreme value distribution. From this observation, a structural similarity score between two
proteins or two different conformations of the same protein is derived from the likelihood of obtaining a
given structural alignment by chance. The performance of the derived score is then compared with well
established, consensus manual-based scores and data sets. We found that the new approach correlates better
than other tools with the gold standard provided by a human evaluator. Timings indicate that the algorithm
is fast enough for routine use with large databases of protein models. Overall, our results indicate that the
new program (MAMMOTH) will be a good tool for protein structure comparisons in structural genomics
applications. MAMMOTH is available from our web site at http://physbio.mssm.edu/∼ ortizg/.

Keywords: Protein structural alignment; model evaluation; protein structure prediction; structural genom-
ics

The challenge of structural genomics is to be able to extract
useful biological information about the biochemical role of
every protein in the organism (Brenner 2001; Mittl and
Grutter 2001; Thornton 2001; Chance et al. 2002). Regard-
less of its final degree of success, structural genomics is
beginning to shift structural biology research from a reduc-
tionist to a more integrative view (Teichmann et al. 2001;
Burley and Bonanno 2002; Hurley et al. 2002). To fully
realize its potential, structural genomics needs rigorous and
fast methods to compare at large scale the vast number of
both experimental protein structures and models, involving
disparate resolution levels, that will be produced over the

next years (Sali 1998; Vitkup et al. 2001). The ability to
compare theoretical and low-resolution models with high-
resolution experimental structures can be expected to be
particularly relevant. Experimental methods will be provid-
ing high-resolution structures for a subset of proteins, but
modeling techniques at different resolution levels will likely
be used to obtain structural information for the bulk of
sequences (Baker and Sali 2001). In addition, high-through-
put determination approaches in X-ray crystallography (Ad-
ams and Grosse-Kunstleve 2000) and nuclear magnetic
resonance (Prestegard et al. 2001; Al-Hashimi and Patel
2002) will deliver largely automatically generated struc-
tures, but at the expense of resolution, structural refinement,
and manual checking. Therefore progress is dependent
upon, among other factors, having tools to match structur-
ally predicted conformations and low-resolution models
with experimentally determined structures. The field of pro-
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tein structural alignment and fold classification is mature,
and a number of excellent approaches are available for this
task (Holm and Sander 1993; Gibrat et al. 1996; Holm and
Sander 1996; Lackner et al. 2000; Yang and Honig 2000).
However, comparing a predicted conformation with an ex-
perimental structure has, as we will show, a certain number
of peculiarities that, in our view, deserve the application of
a specialized tool.

Structural comparisons involving models will also be in-
creasingly required in automated methods for function an-
notation (Baker and Sali 2001). The availability of large
number of structures and sequences is fueling encouraging
developments in ab initio protein structure prediction
(Orengo et al. 1999; Ortiz et al. 1999; Simons et al. 1999)
and related techniques. It may soon be possible to obtain
functional annotations at genomic scale for new open read-
ing frames following a sequence-structure-function para-
digm (Thornton et al. 2000): First, structure prediction can
be used to provide candidate folds for the query sequence
(Ortiz et al. 1998a; Simons et al. 2001). Then, putative
functions are inferred on the basis of structural alignments
to proteins of known structure and function, with (Lichtarge
and Sowa 2002; Madabushi et al. 2002) or without con-
comitant sequence analysis (Fetrow and Skolnick 1998;
Fetrow et al. 1998; Ortiz et al. 1998b; Simons et al. 2001).

The comparison of structural models with experimental
structures is intimately related to the problem of evaluating
structure predictions. A common way to evaluate success in
structure prediction is to study the structural similarity be-
tween predicted and experimental conformations. A usual
measure of this similarity is given by the root mean square
distance (RMS) between the positions of the corresponding
atoms on these proteins, after the structures have been su-
perimposed by an optimal three-dimensional rigid body ro-
tation. Although this approach is adequate for comparing
two closely related structures, it does not work well when
the structures are remotely related. The reason for this is that
one should find similar substructures in otherwise partly
dissimilar conformations. Portions of those substructures
that do not match tend to dominate the RMS value. This is
an instance of the classical issue of outliers dominating a
fitting measure. Additionally, commonly used least-squares
superposition methods suffer from bias introduced into the
comparison process by the choice of atoms employed in the
superposition. This turns out to be a problem also in struc-
ture prediction, where there is usually a one-to-one corre-
spondence at the sequence level between prediction and
experiment, because reduced representations—normally
employed in structure prediction force fields—blur these
correspondences and often produce shifts in registration in
different areas of the structure.

Alternative comparison metrics have been proposed, but
no consensus has been established to date, as can be exem-
plified by the array of different approaches used in the suc-

cessive CASP (critical assessment of methods of protein
structure prediction, round III) meetings (Moult et al. 1999).
To some extent, this is because the specific features to be
compared dictate the similarity measure and algorithm of
choice. Our aim here is to compare theoretical models of
protein folds and to evaluate fold predictions, and therefore
we are interested in determining structural similarity at the
fold level. We started with the intuitive idea that a predic-
tion is successful when the modeled structure is signifi-
cantly more similar to the target fold than to any other
known fold. Consequently, the evaluation method should be
consistent with consensus classifications of experimental
protein structures in folds, such as the manually derived
SCOP database by Murzin and collaborators (Murzin et al.
1995; Lo Conte et al. 2000).

In what follows we elaborate on these ideas: First, we
developed a fast structural alignment approach that (1) is
sequence-independent, (2) focuses on model C� coordi-
nates, and (3) avoids references to sequence or contact
maps. This allows possible registration shifts that tend to
happen in secondary structure assignments and different
resolution levels, and also takes into account the fact that
similar models can have different contact maps. The method
is also capable of considering only portions of the target
protein, avoiding the need to model the complete chain of
the target. Second, and following seminal work by Levitt
and Gerstein (1998) and Abagyan and Batalov (1997), we
assess the final structural alignment obtained with the algo-
rithm by attaching a statistical significance to the similarity
score in the form of a P-value, that is, the probability that a
better score can occur by chance when comparing two un-
related folds provided by Nature. We then demonstrate the
utility of this approach by analyzing models from the
CASP3 contest (Moult et al. 1999). Finally, we briefly dis-
cuss the applicability of our approach in different areas of
structural genomics.

Results

Structural alignments with MAMMOTH

First, we analyzed the quality of the structural alignments
produced by MAMMOTH. For that, we compared the frac-
tion of residues aligned using a set of protein pairs com-
prising some difficult cases. The set is described by Jung
and Lee (2000) in their Table 2 and can be found in our
Table 1. MAMMOTH provides structural alignments simi-
lar to those obtained by other approaches such as Dali
(Holm and Sander 1993), Vast (Madej et al. 1995; Gibrat et
al. 1996), ProSup (Lackner et al. 2000), and SHEBA (Jung
and Lee 2000). Inspection of the superimposed structures
confirmed the agreement between the different algorithms
(not shown). There is, however, one exception: for the 1acx-
1tnf_A pair, MAMMOTH fails to find the correct structural
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alignment. SHEBA also has problems with this pair, but
Dali is able to find a good solution. In Figure 1 we show two
examples of typical structural alignments obtained with
MAMMOTH.

A measure of the computational time needed by
MAMMOTH as a function of problem size is given in Fig-
ure 2, which shows running times for various size protein
pairs, as computed in a 500Mhz Alpha workstation. There
are 10 million comparisons in this plot, averaged so that
each point is the average of 250 comparisons. The double
behavior of MAMMOTH running times is due to the dif-
ferent behavior of the MaxSub routine in different length
regimes. There is a “phase transition” in the average number
of cycles needed for convergence in MaxSub around the 104

residues boundary, apparently due to the increase in struc-
tural complexity. As can be observed, for a typical com-
parison of a pair of small proteins (∼ 100 residues), compu-
tation takes ∼ 0.02 sec (single processor). The algorithm is
faster than most approaches and runs roughly at the same
speed as SHEBA or PrISM (Yang and Honig 2000). How-
ever, it should be noted that MAMMOTH is more general,
as it does not rely upon some of their approximations.
SHEBA, for example, is not a pure structural alignment
algorithm, since it establishes residue correspondences
based on a previous sequence alignment of the proteins to
align. PrISM, on the other hand, computes a prealignment
using secondary structure vectors, and this makes it inad-
equate for low-resolution theoretical models or irregular
proteins. Of course, additional gain in speed could be ob-
tained in MAMMOTH if a secondary structure filter is ap-
plied. Overall, MAMMOTH is able to provide a good com-
promise between alignment quality, computational speed,
and generality.

Table 1. Comparison of structural alignments obtained with
MAMMOTH and with other methods

Protein 1 Protein 2 MAMMOTH SHEBA OTHERS

1acx 1cob_B 77 69 90 (1)
1acx 1tmf−A 25 — 80 (1)
1pts_A 1mup 75 72 76 (1)
2gbl 1ubq 45 44 42 (2)
2gb1 4fxc 42 44 39 (2)
1ubq 4fxc 60 54 48 (2)
1plc 2rhe 64 49 50 (2)
1plc 1acx 51 57 48 (2)
1acx 1rbe 62 59 49 (2)
1aba 1trs 65 64 60 (3)
1aba 1dsb_A 36 52 47 (3)
1aba 1pbf 47 51 36 (4)
1mjc 5tss_A 42 54 50 (4)
1pgb 5tss_A 45 43 43 (4)
2tmv_P 256b_A 68 68 64 (4)
1tnf_A 1bmv_I 54 80 71 (4)
1ubq 1frd 60 56 48 (4)
2rsl_C 3chy 55 59 56 (4)
3chy 1rcf 99 89 75 (4)

This set is taken from Jung and Lee. Table 2 (Jung & Lee, 2000). For each
pair, the number of aligned residues after optimal structural alignment, as
obtained with the different programs, is shown.
(1) Dali (Holm & Sander, 1993); (2) MLC (Boutonnet et al., 1995); (3) VAST
(Madej et al., 1995; Gibrat et al., 1996); (4) ProSup (Lackner et al., 2000)

Fig. 1. Examples of structural alignments obtained with MAMMOTH. (A) Alignment of 1pts_A with 1mup. The structural alignment
score is 9.52; (B) Structural alignment of 1pgb with 5tss_A. The score in this case is 6.29.
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Statistical significance of MAMMOTH scores

An all-against-all comparison of different protein folds
(Table 1A, Appendix) was carried out with MAMMOTH.
The set of different folds compared was selected from the
SCOP database as described in Materials and Methods. Fig-
ure 3 summarizes the results of this calculation as a plot of
the relationship between length of the shortest protein being
compared and percentage of structural identity (see Mate-

rials and Methods) after optimal structural fitting. The dis-
tribution of points in Figure 3 follows the familiar exponen-
tial decay observed by Sander and Schneider (1991) and
Abagyan and Batalov (1997) in alignments of structurally
unrelated sequences, suggesting a similar law for the back-
ground distribution of random structural alignments with
MAMMOTH.

Thus, the raw data of percentage of superimposed resi-
dues (Fig. 3) were used to fit an extreme value distribution
(EVD; Gumbel 1958) using a procedure similar to that put
forward by Abagyan and Batalov (1997) and described in
Materials and Methods. Figure 4 shows examples of fitting
accuracy at two different sequence length intervals, com-
paring the frequency histogram obtained from the data and
the fitted EVD curve. Figure 5 shows the curve fitting of
these parameters to a power law of the length of the shortest
protein being compared. This allows us to obtain the ana-
lytical P-value only from the knowledge of the length of the
shortest protein and the percentage of superimposed resi-
dues. In order to test the accuracy of this P-value, a second
test of all-against-all structural alignments was carried out
(see Materials and Methods and Table 2A, Appendix). This
time the analytical probability was compared to the calcu-
lated probability using the test set. Figure 6 shows an ex-
cellent agreement between both curves in the most relevant
interval, up to the 95% confidence level. MAMMOTH is
able to detect 50% of the true fold relationships in SCOP at
the 99% confidence level, and 60% of them at the 95%
confidence level. These numbers are comparable to results
obtained with other automatic structure comparison meth-

Fig. 2. Running time as a function of problem size. In the x axis, the product of the length of the two sequences being compared is
shown, whereas in the y axis, the structural alignment time in seconds is plotted.

Fig. 3. Background distribution of random structural alignments. The
percentage of structural similarity (PSI) after superimposing with
MAMMOTH pairs of protein structures with different folds (see Materials
and Methods and Table 1A in the appendix) is plotted as a function of the
length of the shortest protein (Norm) being compared. All pairs of proteins
in Table 1A are compared in the figure.
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ods. For example, Yang and Honig (2000) reported 54%
coverage at the 99% confidence level with PrISM. There are
no published data regarding Dali. However, we have con-
ducted similar tests using DaliLite (Holm and Park 2000),
which indicated that DaliLite is able to detect 60% of SCOP
relationships at the 99% confidence level, a slightly better
performance, but similar to that obtained with MAMMOTH
or PrISM. We conclude that MAMMOTH shows perfor-
mance consistent with other structural alignment methods
when comparing experimental protein structures, and that
the P-value estimation provided by the EVD fitting is rather
accurate.

Protein fold recognition with experimental structures

So far we have shown evidence that MAMMOTH partitions
fold space in a way somewhat similar to that implicit in the
SCOP database. We were also interested in testing the con-
sistency and robustness of this partition, that is, the ability
of the method to recognize entire families of members be-
longing to the same fold in SCOP. We selected fold families
classified in SCOP with more than 15 members per family,
and from each fold family we randomly picked one repre-
sentative member, and then carried out comparisons with all
other members of that fold family. We then studied how
these families distribute as a function of MAMMOTH mean
recognition ability (i.e., percentage of members above the

Fig. 6. Coverage-error plot for MAMMOTH scores. See text for details.

Fig. 4. Extreme value distribution (EVD) fit at different length intervals
(Norm). In bars is the frequency histogram of PSI values; in red, the EVD
curve using parameters derived from the frequency histogram; in magenta
is the curve obtained using EVD parameters derived from a fitting to Norm
(see text for details). (A) Norm � 100; (B) Norm � 200.

Fig. 5. Length-dependent estimate of EVD parameters. Parameters fitted
at each sequence interval are in turn modeled as a function of the length of
the shortest protein in the comparison.
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4.5 threshold score) and MAMMOTH mean scores (aver-
ages over all members in the family). Figure 7 shows the
results in the form of a density contour plot, contoured at
0.01 density. The figure indicates that MAMMOTH scores
provide consistent partitions: For most cases, more than
80% of members are recognized. And for those families
with more than 80% of recognized members, the lowest
level of the density curve is close to the boundary of
−ln(P) � 4.5 (P-value≈ 0.01), the threshold for statistical
significance (99.0% confidence level). Thus, the cutoff for
a statistically significant similarity is close to the boundary
of mean similarity found among family members. This is
another indication that, within MAMMOTH, the extent of
fold space covered by members of each fold type is large,
although highly variable depending on the specific group. A
cutoff of −ln(P) � 4.5 seems to be adequate to classify fold
members together. In Figure 8, we have plotted the fre-
quency of fold families as a function of the percentage of
members recognized at this cutoff. Again, for most fold
families, 80% or more of their members are recognized, and
the proportion of false positives is small and evenly distrib-
uted (Fig. 8). Our view after these experiments is that the
complete protein fold space appears to be quasi-discrete,
with some overlap between different folds. That is, fold type
attractors seem to be clearly defined in fold space, but the
boundaries between some of the fold types are diffuse,
populated by intermediate structures that may be indicative
of evolutionary pathways. Other authors have arrived at
similar conclusions through different analyses (Domingues
et al. 2000; Yang and Honig 2000).

Finally, in Figure 9 we have plotted the mean fold family
score as a function of the length of the representative protein
family member (the length of the query protein described
above). Fold families were separated, taking into account
the average percentage of residues structurally aligned with
that member in four classes. Protein families with an aver-
age percentage of aligned residues between 0 < PSI � 25
are colored in red, giving regression equations

y � 0.0167x if x � 200, y � 2.9996 · 10−3x
+ 2.74 if x > 200.

Protein families with an average percentage of aligned resi-
dues in the interval 25 < PSI � 50 for all family members
are colored in green, giving regression lines

y � 0.0351x if x � 200, y � 0.0226x + 2.5 if x > 200.

Fig. 7. Contour plot for family recognition. The percentage of family
members recognized is plotted in the x axis; the y axis indicates the mean
MAMMOTH score (−ln(P)) for that family. A density surface is contoured
in the x–y plane using 0.015 as contouring threshold. See text for additional
details.

Fig. 8. Cumulative frequency of family recognition at the detection thresh-
old. (A) Percentage of members recognized per family. (B) Percentage of
false positives.
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Cyan represents families in the interval 50 < PSI � 75,
giving regressions

y � 0.0796x if x � 200, y � 0.0294x + 10.4 if x > 200.

Finally, protein families in the interval 75 < PSI � 100 for
all family members are colored in blue, with equations

y � 0.1252x if x � 200, y � 0.0427x + 16.5 if x > 200.

As expected, protein structures with low percentages of
aligned residues have low MAMMOTH P-values. There is
a bilinear dependency between MAMMOTH scores and
protein length within each quality category, with a change in
slope at the threshold of ∼ 200 residues. The green line rep-
resents roughly the threshold for correct fold identification,
and can be used to correctly assess a fold prediction taking
protein size into account. Despite this dependency on pro-
tein size, it is interesting to note that, according to the re-
gression equation, a typical pair of 150-residue proteins
having about 50% of their residues aligned would have a
score of 5.2, only slightly above the 4.5 threshold marking
a statistically significant match. Again, this is an indication
of the quasi-discrete distribution of protein structures in fold
space.

Thus, as a summary, for a typical protein structure pre-
diction in the 100–200-residue range, predictions with a
score below ∼ 4.00 can be considered definitely wrong. Pre-
dictions with a score between ∼ 4.00 and ∼ 5.25 on average
are borderline, with some well predicted pieces in an overall

wrong fold. Scores above ∼ 5.25 are, on average, consistent
with a correct fold prediction.

Benchmarking on CASP3 predicted models

Once the evaluation method has been described, we proceed
to test it by comparing its performance with datasets of
manual, consensus evaluations of predicted protein struc-
tures. In detail, evaluation performance was tested by com-
paring model rankings given by MAMMOTH P-values
(more accurately the −ln(P) scores) with rankings produced
by Murzin (1999) in his analysis of the fold recognition
section in CASP3 (Moult et al. 1999). Figure 10 shows the
relationship between the mean score by group given by
Murzin and the mean score produced by MAMMOTH.
Each point in the plot was obtained by computing the av-
erage over all models submitted by each different group
participating in CASP3. MAMMOTH scores explain
roughly 50% of the variance in the Murzin scores. Thus,
there is a reasonably good correspondence between the
mean MAMMOTH scores calculated within each predicting
group participating in CASP3 and the mean Murzin evalu-
ation score made by manual comparison. An interesting
result to note from Figure 10 is the low value of the
MAMMOTH mean scores, below 4.0 for most groups.
Thus, the expected structural similarity between the models
produced for most groups and the experimental structures is
not much better than that the expected value obtained by
randomly picking any pair of folds in the database. This is
an important feature of the evaluation method: The scoring
system is connected to our knowledge of protein structure.
Figure 11 displays the results of another quality check with
MAMMOTH. It shows all models submitted to CASP3 su-

Fig. 9. Model quality using MAMMOTH scores. Each point is the mean
P-value within each fold family as a function of the query protein length.
Lines are a bilinear fitting using a cutoff at 200 residues (x < 200 and
x > 200). Points correspond to individual families, and are colored as a
function of PSI: red (0 < PSI � 25), green (25 < PSI � 50), cyan
(50 < PSI � 75), blue (75 < PSI � 100).

Fig. 10. Correlation between manual evaluation and automated scoring.
Mean score by group given by Murzin against mean score produced by
MAMMOTH. Each point is an average over all models submitted by each
different group participating in CASP3.

Ortiz et al.

2612 Protein Science, vol. 11



perimposed onto the trend lines derived in Figure 9. Only a
few models with good quality were created.

Comparison with other methods in prediction evaluation

We also compared MAMMOTH with other previously pro-
posed approaches to model evaluation (see Materials and
Methods). Using the same set of predicted structures from
CASP3, the Spearman’s rank correlation coefficient was
calculated between all pairs of different evaluation methods.
We used rank correlation because of its inherent higher
robustness (Langley 1970). From the rank correlation ma-
trix we then derived the tree shown in Figure 12 by single
linkage cluster analysis (Johnson and Wichern 1998) of the
Spearman correlation coefficients. MAMMOTH is the
evaluation method with its scoring scheme closest to Mur-
zin’s ranking, so that both of them have a similar behavior
in comparison with the rest of the score systems. For ex-
ample, scores computed within Dali are less similar to each
other than Murzin’s and MAMMOTH scores are between
them.

It is important to take into account that Orengo made her
evaluation of CASP3 models in a subset of all targets and
groups evaluated by Murzin. In order to test whether there
is a significant difference between both subsets, we per-
formed a Wilcoxon’s sum of ranks test (see Materials and
Methods) using Murzin’s, Dali, PrISM, and MAMMOTH
scores (for which we had available both sets of numerical
data). For all methods except Dali, differences in ranks are
not significant, and can be explained by differences in
sample size. This is not the case with Dali scores, however,
although in this case ranking of correlations is still pre-

served. We conclude from this analysis that the tree shown
in Figure 12 is robust and is not likely to change with an
increase in sample size, although some of the branches
could fluctuate to some extent, as seems to be the case for
the Dali branch. All correlation coefficients used to build
the tree on Figure 12 can be found in Table 2.

How can we explain the improvement in fold evaluation
achieved by MAMMOTH? We have studied errors and suc-
cesses of the different approaches to try to detect underlying
patterns that could explain these differences, and will dis-
cuss some examples. Methods based on counting the num-
ber of fragments below a certain RMS threshold tend to fail,
not surprisingly, when the predicted model is built from
short fragments assembled in 3D. This is the case, for ex-
ample, of some predictions for target t0071 in CASP3,
where Group 217 made a threading model using structural
fragments shorter than 25 residues. This model is ranked
second both by Murzin and MAMMOTH; however,
Orengo-Lesk failed to give it a high rank. We have also
observed that assessment methods based on compatibility of
3D environments tend to fail if there are shifts in model
registration, even in cases where the overall fold is pre-
served. For example, Group 5 submitted a threading model
for target t0071 (Figure 13A), which is ranked in fifth place
by Murzin and in fourth place by MAMMOTH. The struc-
tural alignment produced by MAMMOTH shows a consid-
erable shift in registration, even though the overall fold is
well reproduced. There are also problems associated with
multidomain proteins, probably related to the way the simi-
larity score is normalized. For example, the best model sub-
mitted for target t0071, according to Murzin’s criteria, was
ranked only fifth with PrISM. Finally, there are also con-

Fig. 11. Models submitted to CASP3 in the quality framework described
in Figure 9. Each point is a model represented by the target length and the
P-value obtained in the MAMMOTH superposition.

Fig. 12. Cluster analysis of the different evaluation methods. See text for
details.
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siderable sources of error associated with distortions of sec-
ondary structure elements, particularly for ab initio models.
Structure alignment programs designed to classify experi-
mental protein structures, and not specifically to evaluate
predictions, tend to suffer from artifacts arising from this. It
is the case of the model submitted by Group 5 for target
t0083 (Fig. 13B), considered by Murzin as the second-best
model for this target. Whereas Dali did not find a significant
structural similarity between target structure and model,
MAMMOTH scored it with −ln(P) � 7.35. Thus, the im-
provement achieved by MAMMOTH seems to be the result
of a successful design to explicitly avoid some of these
shortcomings.

Discussion

A new algorithm for protein structural alignment is de-
scribed. As have other authors (Holm and Sander 1993;
Madej et al. 1995; Gibrat et al. 1996; Shindyalov and
Bourne 1998; Jung and Lee 2000; Lackner et al. 2000; Yang
and Honig 2000), we resorted to the use of heuristics to cast
the problem in a computationally tractable form. We divide
the process into two steps: first, we compute the optimal
similarity of the local backbone chain to establish residue
correspondences between residues in both structures; in a
second step, we then compute the largest subset of residues
found within a given distance threshold in cartesian space.
Insertions, deletions, and registration shifts between both
structures are introduced in the first step. The approach is
reminiscent of other structural alignment algorithms, al-
though there are some clear differences. First, MAMMOTH
uses unit-vector root mean square (Chew et al. 1999; Kedem
et al. 1999) distances in the comparison of local structures,
instead of the more widely used secondary structure ele-
ments. This is important when evaluating structure predic-

tions because it avoids relying on secondary structure as-
signments, known to be very sensitive to the exact position
of the backbone atomic coordinates (Labesse et al. 1997). It
also allows the comparison of structures with a small per-
centage of defined secondary structure motifs, such as di-
sulfide-rich small proteins, which cannot be handled by the
more traditional methods. Second, the heuristic procedure
used to search for the largest core with minimum RMS
(Siew et al. 2000) is able to accelerate considerably the
computation with respect to alternative approaches. The
joint use of the above two features yields a fast, simple,
deterministic, and yet completely general algorithm. This is
demonstrated by the quality of the structural alignments and
cores detected in difficult cases, with results comparable to
other well known programs. Finally, the use of the EVD
provides a rigorous score to evaluate structural alignments,
particularly in structure prediction, as shown in the evalu-
ation of CASP3 results.

In agreement with previous observations using percent-
age of sequence identity or sequence similarity with random
sequence alignments, we show that the percentage of struc-
tural superimposition in random structural alignments also
follows the well known EVD. This is not unexpected be-
cause a structural alignment, as well as its sequence coun-
terpart, involves the optimization of a similarity score. The
same distribution was reported by Levitt and Gerstein
(1998) using a different metric to compute structural dis-
tances and a different optimization algorithm. A comparison
between analytical and observed curves shows that
MAMMOTH provides accurate estimates of the real P-val-
ues. On the other hand, the ability of MAMMOTH to re-
produce SCOP fold classifications is similar to that of other
available methods.

The structural comparison method described here has
been successfully tested as an approach to evaluate models

Table 2. Correlation matrix between the different evaluation methods

Murzin Dali Z Dali sup Mammoth M-sup O-Lesk O-rmsd
Oreago

ss
Vast
sup

Vast
rmsd

PrlSM
sco

PrlSM
sup

PrlSM
psd GDT-TS

Murzin 1 0.38 −0.19 0.84 0.78 0.6 0.53 0.01 0.53 0.53 0.07 0.34 0.08 0.49
Dali Z 0.38 1 0.6 −0.07 −0.06 0.06 0.19 0.14 0.52 0.52 0.53 −0.14 0.53 0.11
Dali sup −0.19 0.6 1 −0.36 −0.41 −0.16 0.18 0.17 0.29 0.29 0.74 −0.16 0.52 0.26
MAMMOTH 0.84 −0.07 −0.36 1 0.91 0.54 0.56 −0.02 0.4 0.4 −0.13 0.23 −0.05 0.26
M-sup 0.78 −0.06 −0.41 0.91 1 0.72 0.41 0.06 0.41 0.41 −0.22 0.28 −0.12 0.17
O-Lesk 0.6 0.06 −0.16 0.54 0.72 1 0.23 0.46 0.24 0.24 −0.06 0.61 −0.09 0.42
O-rmsd 0.53 0.19 0.18 0.56 0.41 0.23 1 0.38 0.53 0.53 0.59 −0.04 0.72 0.07
O-ssap 0.01 0.14 0.17 −0.02 0.06 0.46 0.38 1 0.35 0.35 0.49 0.21 0.56 −0.16
V-sup 0.53 0.52 0.29 0.4 0.41 0.24 0.53 0.35 1 1 0.53 −0.23 0.52 0.05
V-rmsd 0.53 0.52 0.29 0.4 0.41 0.24 0.53 0.35 1 1 0.53 −0.23 0.52 0.05
P-score 0.07 0.53 0.74 −0.13 −0.22 −0.06 0.59 0.49 0.53 0.53 1 −0.009 0.88 −0.09
P-sup 0.34 0.14 0.16 0.23 0.28 0.61 −0.04 0.21 −0.23 −0.23 −0.009 1 −0.20 0.42
P-psd 0.08 0.53 0.52 −0.05 −0.12 −0.09 0.72 0.56 0.52 0.52 0.88 −0.20 1 0.07
GDT-TS 0.49 0.11 0.26 0.26 0.17 0.42 0.07 −0.16 0.05 0.05 −0.09 0.42 0.07 1

For each pair of evaluation scores, the Spearman correlation coefficient was computed using the data set of models shown in Table 3A of the Appendix.
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generated by protein structure prediction methods. A com-
parison of different evaluation methods using the CASP3
benchmark indicates that MAMMOTH provides model
quality rankings more consistent than those produced by
other methods with the criteria provided by a human expert.
It is instructive to compare the performance of different
approaches when using experimental versus modeled struc-
tures. Although MAMMOTH, Dali, and PrISM, for ex-
ample, show similar ability to recognize structural ho-
mologs based on experimental coordinates, there is a con-
siderable difference when the objective is the comparison of
modeled structures. In this case, MAMMOTH is consider-
ably better than the other approaches. This highlights the
fact that the problems involved in comparing modeled struc-
tures with their experimental counterparts and in comparing
two experimental structures are different.

Due to its speed, insensitivity to differences in length, and
rigorous evaluation score, MAMMOTH can be an impor-
tant tool for protein structure comparison studies in struc-
tural genomics applications, particularly in those cases
where partial or low-resolution models are of interest. For

example, Baker and coworkers recently reported evidence
that ab initio structure prediction followed by global struc-
ture comparison against the protein structure database can
give insight into protein structure and function in cases
where sequence-based methods alone fail (Simons et al.
2001). It can be reasonably expected that in the near future
it will possible to apply this two-stage approach to small
proteins at genomic scale. The good performance shown by
MAMMOTH in this work makes it an ideal tool for the
second part of this protocol, and recent results support this
conclusion (Bonneau et al. 2002).

Additionally, MAMMOTH seems to be an adequate tool
to be used in more fundamental studies of protein structure.
For example, it allows finding and classifying, in a general
way, recurrent structural motifs present in protein struc-
tures. These motifs are possibly responsible for the quasi-
discreteness of fold space described by us in this paper and
by others before us (Domingues et al. 2000). There is con-
siderable interest in the structural biology community to
derive a full inventory of these structural building blocks,
and several approaches to the subject have already been

Fig. 13. Some typical “mistakes” in evaluation produced by other methods. The experimental structure is shown as a cartoon model.
The matched portion of the theoretical model is shown in magenta, while the unmatched region is shown in gray. (A) t0071_g5; (B)
t0083_g190.
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made (Holm and Sander 1998; Kleywegt 1999; Shindyalov
and Bourne 2000; Reddy et al. 2001). Likewise, the ability
of MAMMOTH to detect structural similarities using query
substructures or building blocks can be of interest in ap-
proaches aimed at fitting models to electron density maps
using databases of known protein structures (Diller et al.
1999a,b; Perrakis et al. 1999; Lamzin and Perrakis 2000;
Jiang et al. 2001).

Finally, the high formal correspondence of MAMMOTH
program structure to sequence alignment programs suggests
that it should be straightforward to develop multiple struc-
ture alignment algorithms using MAMMOTH as a starting
point. Several groups are actively addressing the problem of
multiple structural alignment (Guda et al. 2001; Leibowitz
et al. 2001a,b). With the current increase in the mean num-
ber of homologous protein structures in the database, it is
important to develop more efficient algorithms for this
problem. Work is in progress along these directions.

Materials and methods

MAMMOTH algorithm

The evaluation method focuses on model coordinates, avoiding
references to sequence or contact maps while allowing registration
shifts and different resolution levels. The method considers only
the modeled portion of the target structure, avoiding the need to
model the complete chain of the target. In common with other
researchers, we reduce the complexity of the problem by using a
heuristic approach: We first find the structural alignment that pro-
vides the optimal local similarity of the protein backbone (i.e.,
optimal local structure similarity of the complete amino acid se-
quence of both proteins) and then try to find the maximum subset
of residues below a predefined distance in 3D space. The method
consists of four basic steps:

(1) From the C� trace, compute the unit-vector root mean
square (URMS) distance between all pairs of heptapeptides of both
model and experimental structure (Kedem et al. 1999). This is a
measure sensitive to local structure, originally suggested by Chew
et al. (1999). Consider a protein as described by its sequence of
�-carbons (C�). For each successive pair of C� atoms along the
backbone chain, we can record the unit vector in the direction from
C� i to C� i+1. We can then place all recorded unit vectors at the
origin, so that the backbone is mapped into vectors in the unit
sphere. The URMS distance between two protein segments A and
B (heptapeptides in our case) can then be computed by determining
the rotation matrix which minimizes the sum of the squared dis-
tances between the corresponding unit vectors, using standard
techniques (McLachlan 1979). The square root of the resulting
minimum sum is defined as the URMS distance between hepta-
peptides A and B. It has been shown that the URMS metric pro-
vides an efficient detection of substructure similarities in proteins
(Chew et al. 1999; Kedem et al. 1999).

(2) Use the matrix derived in step 1 to find an alignment of
local structures that maximizes the local similarity of both the
model and the experimental structure. First, URMS values need to
be transformed to similarity scores. This is accomplished by noting
that, as discussed by Chew et al. (1999), the expected minimum
URMS distance between two random sets of n unit vectors
(URMSR) is:

URMSR = �2.0 −
2.84

�n
( 1)

Thus, from eq. (1) we can then compute a similarity score (SAB)
between any two heptapeptides A and B as:

SAB =
�URMSR − URMSAB�

URMSR
��URMSR,URMSAB� ( 2)

Here, �(URMSR, URMSAB) � 10 if URMSR > URMSAB and
�(URMSR, URMSAB) � 0 otherwise. Therefore, SAB provides a
similarity scale between 0 and 10. Entries SAB are used to build the
similarity matrix S obtained by comparing all possible heptapep-
tides in both proteins. Dynamic Programming is then applied to
this similarity matrix in order to build an alignment of both struc-
tures on the basis of their backbone (local) similarity. This align-
ment is produced using a global alignment method with zero end
gaps (Needleman and Wunsch 1970). Internal gaps are penalized
using an affine gap penalty function of the form g(k) � �+�k,
where k is the number of gaps and � and � are the opening and
extension penalties, respectively. Trial and error tests (see below)
indicated that values of � � 7.00 and � � 0.45 gave good results.

(3) Find the maximum subset of similar local structures that
have their corresponding C� close in cartesian space. Close is
considered here as a distance less than or equal to 4.0 Å. The
method to find this subset is a small variant of the heuristic
MaxSub algorithm (Siew et al. 2000; http://www.cs.bgu.ac.il/
∼ dfischer/MaxSub/). Once the algorithm converges, the percent-
age of structural identity (PSI) is computed, defined as the per-
centage of corresponding residues below 4.0 Å in 3D space, mea-
sured with respect to the shortest structure.

(4) Calculate the probability of obtaining the given proportion
of aligned residues (with respect to the shortest protein model) by
chance (P-value). The P-value estimation is based on extreme-
value fitting of the scores resulting from random structural align-
ments, following the work of Abagyan and Batalov (1997). The
Type-I extreme value distribution based on the largest extreme,
also known as the Gumbel distribution, has the following general
form for its probability density function (Gumbel 1958):

f�x� =
1

b
e

− �x− a�

b e− e
− �x− a�

b ( 3)

where a is the so-called location parameter and b is the scale
parameter. We are interested in the probability of having a t value
greater than x, P(t > x). This value can be found by integrating
equation (3) from t to infinity, yielding:

P�t � x� = �
t

�

f�x�dx = 1 − e− e
− �x− a�

b ( 4)

In order to apply eq. (4) we need parameters a and b. For their
derivation it is more convenient to work with the probability of
having a value t smaller than or equal to x:

P�t � x� = e− e
− �x − a�

b ( 5)

Taking logarithms in eq. (5) and setting Q(x) � P(t � x) and
P(x) � P(t > x), we have Q(x) + P(x) � 1. Equation 5 can then be
transformed to the following linear form:
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ln� − ln�1 − P�x��� =
a

b
−

1

b
x ( 6)

Parameters a and b can now be estimated from a linear fitting
between x, the percentage of aligned residues (PSI) obtained from
the structural alignment algorithm in step 3, and ln(−ln(1−P(x))),
where P(x) is computed as an accumulated sum of the observed
frequencies with values greater than x. The reason for using P(x)
instead of Q(x) in eq. 6 is in order to give a larger weight to the tail
of the distribution, which contains the most critical part of the
curve. Once a and b are found, expected values for the mean � and
variance �2 can be derived using the method of moments, giving
relationships:

� = a + 	b ( 7)

�2 =

2

6
b2 ( 8 )

where 	 ≈ 0.5772 is the well-known Euler-Mascheroni constant
(Gumbel 1958). Introducing eqs. 10 and 11 in eq. 4, the P-value as
a function of z-score is obtained:

P�Z � z� = 1 − e− e
− � 


�6
z + 	�

( 9)

Parameter optimization

Several parameters are used within the program: the length of the
peptide in the URMS calculation, the similarity score derived from
the URMS computation, the gap opening and extension penalties,
the maximal distance between C�, and the a and b parameters in
the EVD. With the exception of the gap penalties and a and b
parameters, no exhaustive optimization has been carried out. Gap
penalties were optimized using a grid-like search, once the rest of
parameters were fixed. The a and b parameters have been dis-
cussed previously. For the rest, values were initially established in
order to avoid an undesirable combinatorial explosion in parameter
space, based on the following considerations: (1) Number of resi-
dues for local similarity: This number has to be large enough to
consider the different types of secondary structure. Four residues
are required to define a helix turn and a �-turn. Thus, this would
be a lower bound. However, calculations with ideal secondary
structures (data not shown) indicated that helices and turns are
difficult to distinguish by the URMS value with only four residues.
Adding flanking residues provides a window of six residues, able
to distinguish �-turns and helices. A seven-residue window was
found to be more appropriate, however, probably because it can
consider a complete two-helix turn. We observed that larger values
begin to flat correct alignment pathways in similarity matrices, and
therefore selected a heptapeptide. (2) Random URMS score: This
value is established analytically, on the basis of the expected ran-
dom values, and simply scaled between 0 and 10. Therefore there
are no parameters to fit. (3) Maximal distance between C�: Based
on the value used in the MaxSub algorithm, together with visual
observation of the results. The original MaxSub algorithm uses 3.5
Å. When dealing with models, a slightly larger value of 4 Å was
deemed necessary.

Computation of coverage-error plots

From the all-versus-all comparison, we compute the coverage-
error plot applying a procedure similar to that described by Levitt

and Gerstein (1998): (1) For each pair we determine its P-value as
computed by eq. 12, and note whether the pair is a true-positive or
a true-negative; (2) We sort all pairs by increasing P-value; (3) We
count down the list from best to worst and at each point in the list
we find out the number of false positives and from that, the ob-
served P-value; (4) We also compute the fraction of true positives
that are more significant than the threshold P-value; this number
defines the coverage, which should be as large as possible. On the
other hand, observed and calculated P-values should be as close as
possible.

Comparison with other evaluation methods

In order to assess the relative performance of MAMMOTH, we
compared the evaluation scores provided by this approach with a
set of 11 different evaluation methods previously used in CASP for
structure comparison and model evaluation. All methods were
benchmarked against the assumed gold standard given by Mur-
zin’s manual ranking of models submitted to the CASP3 meeting
(Murzin 1999). When assessing the merits of the different ap-
proaches discussed here, it is important to keep in mind that some
of these algorithms were not specifically developed to compare
predicted models with their corresponding experimental structures,
but rather to compare and classify pairs of experimental structures.
The following sets of automatic criteria for assessment of the
different models were compared with that used by MAMMOTH:

A. During CASP3, Orengo (Orengo et al. 1999) evaluated the ab
initio predictions using three different criteria: the amount of
nonoverlapping segments of 25 residues with an RMS value of
4.0 Å (Lesk 1997, referenced here as orengo-lesk); the simi-
larity of the structural environment at each residue position
(Taylor and Orengo 1989; orengo-ssap); and the largest frag-
ment with an RMS of 4.0 Å (Orengo et al. 1999; orengo-rmsd).
All three measures were compared with the MAMMOTH
score.

B. Dali (Holm and Sander 1993) is a well known program for
protein structure comparison. The Dali Z-score has been fre-
quently used in the evaluation of structural predictions (Ortiz et
al. 1998b; Simons et al. 2001). We have studied here both the
Z-score (dali) and the percentage of superimposed residues
(dali-sup) provided by the DaliLite package (Holm and Park
2000).

C. Vast (Madej et al. 1995; Gibrat et al. 1996) is another auto-
matic method frequently used for protein structural alignment.
Vast scores were used in both CASP2 and CASP3 to evaluate
predicted structures. Here we used as scores the RMSD of the
structural alignment (vast-rmsd) and the percentage of super-
imposed residues (vast-sup).

D. PrISM (Yang and Honig 2000) is a recently reported multi-
purpose program for protein modeling that also evaluates struc-
tural relationships between protein structures by using a new
measure of protein structural distance. We used as scores the
protein structural distance (prism-psd); the secondary structure
alignment score (prism-score) and the percentage of superim-
posed residues and calculated by PrISM.

E. Finally, the GDT method (Zemla et al. 1999) was also in-
cluded. The score (gdt-ts) is obtained from the global distance
test (Zemla et al. 1999). It takes into account the percentage of
residues that can be found within a given distance threshold
between model and target. The gdt-ts measure is an average of
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percentages obtained at 1, 2, 4, and 8 Å and has been used in
previous assessments of CASP results by the Zemla team.

Comparisons were restricted to groups and targets evaluated
jointly both by Murzin and Orengo during CASP3. These models
are a subset of all models evaluated by Murzin during CASP3. The
set of models included in the evaluation is listed in Table 3A of the
Appendix. In order to test whether this subset is representative
enough of the results that could have been obtained by using all
models evaluated by Murzin, we used the Wilcoxon’s sum of ranks
test (Langley 1970) using the Murzin, Dali, MAMMOTH, and
PrISM scores (for which we had all scores for both sets). We then
compared the set of Murzin evaluations (all models) with the set
evaluated jointly by Orengo and Murzin (subset). Our null hypoth-
esis was that there are no significant differences in score distribu-
tion between both sets of models, so that results of the subset are
representative of the complete set in CASP3. The test is as follows
(Langley 1970): First, the scores of both samples (Murzin’s set and
the Orengo-Murzin subset) are pooled together. Then, the com-
bined set of scores is sorted, and for each measurement a rank
value is assigned. The smallest rank total R is then defined as the
smaller of the sum of ranks coming from each sample. If distri-
butions come from different underlying populations, unequal rank
totals are expected. The probability of getting unequal rank totals
as a consequence of chance variation can then be determined from
R. The significance of the smaller rank total is found by calculating
the statistic z given by the equation:

z =
2R − nR�nA + nB + 1�

�nAnB�nA + nB + 1�

3

( 10 )

where nR is the number of measurements in whichever sample
possesses the smaller rank total. The z-statistic distributes normally
under the null hypothesis, and therefore the significance of z can
finally be calculated using a normal distribution (Langley 1970).

Selection of structural datasets

Fold set selected to compute the background
random distribution (Table 1A, Appendix)

This set was used to fit the EVD and to obtain the P-value esti-
mation. It comprises a set of different folds without significant
sequence identity (25% cutoff in sequence identity), selected by
combining the pdb_select list from Hobohm and coworkers
(Hobohm et al. 1992; Hobohm and Sander 1994) with the SCOP
database.

A test set selected to compute coverage error plots
(Table 2A, Appendix)

In this test set we first selected a representative set of proteins of
different folds as in the previous case, but in addition we incor-
porated for each fold a second representative.

Fold families

All fold families from SCOP with more than 15 members per
family were selected. We were able to select families belonging to
115 different folds, with 22 of them from the all-� class, 24 from
the all-� class, 20 from the �/� class, and 21 from the �+� class.
The rest (18 folds) belongs to other classifications in SCOP.

Table 1A. PDB ID of the set of protein strutures used in P-value parameter estimation
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Dataset of predicted models (Table 3A, Appendix)

Models were downloaded from the CASP web site at: http://pre-
dictioncenter.llnl.gov/casp3/Casp3.html.
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