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Abstract

Advances in structural genomics and protein structure prediction require the design of automatic, fast,
objective, and well benchmarked methods capable of comparing and assessing the similarity of low-
resolution three-dimensional structures, via experimental or theoretical approaches. Here, a new method for
sequence-independent structural alignment is presented that allows comparison of an experimental protein
structure with an arbitrary low-resolution protein tertiary model. The heuristic algorithm is given and then
used to show that it can describe random structural alignments of proteins with different folds with good
accuracy by an extreme value distribution. From this observation, a structural similarity score between two
proteins or two different conformations of the same protein is derived from the likelihood of obtaining a
given structural alignment by chance. The performance of the derived score is then compared with well
established, consensus manual-based scores and data sets. We found that the new approach correlates better
than other tools with the gold standard provided by a human evaluator. Timings indicate that the algorithm
is fast enough for routine use with large databases of protein models. Overall, our results indicate that the
new program (MAMMOTH) will be a good tool for protein structure comparisons in structural genomics
applications. MAMMOTH is available from our web site at http://physbio.mssm.edu/~ortizg/.
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The challenge of structural genomics is to be able to extract
useful biological information about the biochemical role of
every protein in the organism (Brenner 2001; Mittl and
Grutter 2001; Thornton 2001; Chance et al. 2002). Regard-
less of its final degree of success, structural genomics is
beginning to shift structural biology research from a reduc-
tionist to a more integrative view (Teichmann et al. 2001;
Burley and Bonanno 2002; Hurley et al. 2002). To fully
realize its potential, structural genomics needs rigorous and
fast methods to compare at large scale the vast number of
both experimental protein structures and models, involving
disparate resolution levels, that will be produced over the
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next years (Sali 1998; Vitkup et al. 2001). The ability to
compare theoretical and low-resolution models with high-
resolution experimental structures can be expected to be
particularly relevant. Experimental methods will be provid-
ing high-resolution structures for a subset of proteins, but
modeling techniques at different resolution levels will likely
be used to obtain structural information for the bulk of
sequences (Baker and Sali 2001). In addition, high-through-
put determination approaches in X-ray crystallography (Ad-
ams and Grosse-Kunstleve 2000) and nuclear magnetic
resonance (Prestegard et al. 2001; Al-Hashimi and Patel
2002) will deliver largely automatically generated struc-
tures, but at the expense of resolution, structural refinement,
and manual checking. Therefore progress is dependent
upon, among other factors, having tools to match structur-
ally predicted conformations and low-resolution models
with experimentally determined structures. The field of pro-
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tein structural alignment and fold classification is mature,
and a number of excellent approaches are available for this
task (Holm and Sander 1993; Gibrat et al. 1996; Holm and
Sander 1996; Lackner et al. 2000; Yang and Honig 2000).
However, comparing a predicted conformation with an ex-
perimental structure has, as we will show, a certain number
of peculiarities that, in our view, deserve the application of
a specialized tool.

Structural comparisons involving models will also be in-
creasingly required in automated methods for function an-
notation (Baker and Sali 2001). The availability of large
number of structures and sequences is fueling encouraging
developments in ab initio protein structure prediction
(Orengo et al. 1999; Ortiz et al. 1999; Simons et al. 1999)
and related techniques. It may soon be possible to obtain
functional annotations at genomic scale for new open read-
ing frames following a sequence-structure-function para-
digm (Thornton et al. 2000): First, structure prediction can
be used to provide candidate folds for the query sequence
(Ortiz et al. 1998a; Simons et al. 2001). Then, putative
functions are inferred on the basis of structural alignments
to proteins of known structure and function, with (Lichtarge
and Sowa 2002; Madabushi et al. 2002) or without con-
comitant sequence analysis (Fetrow and Skolnick 1998;
Fetrow et al. 1998; Ortiz et al. 1998b; Simons et al. 2001).

The comparison of structural models with experimental
structures is intimately related to the problem of evaluating
structure predictions. A common way to evaluate success in
structure prediction is to study the structural similarity be-
tween predicted and experimental conformations. A usual
measure of this similarity is given by the root mean square
distance (RMS) between the positions of the corresponding
atoms on these proteins, after the structures have been su-
perimposed by an optimal three-dimensional rigid body ro-
tation. Although this approach is adequate for comparing
two closely related structures, it does not work well when
the structures are remotely related. The reason for this is that
one should find similar substructures in otherwise partly
dissimilar conformations. Portions of those substructures
that do not match tend to dominate the RMS value. This is
an instance of the classical issue of outliers dominating a
fitting measure. Additionally, commonly used least-squares
superposition methods suffer from bias introduced into the
comparison process by the choice of atoms employed in the
superposition. This turns out to be a problem also in struc-
ture prediction, where there is usually a one-to-one corre-
spondence at the sequence level between prediction and
experiment, because reduced representations—normally
employed in structure prediction force fields—blur these
correspondences and often produce shifts in registration in
different areas of the structure.

Alternative comparison metrics have been proposed, but
no consensus has been established to date, as can be exem-
plified by the array of different approaches used in the suc-

cessive CASP (critical assessment of methods of protein
structure prediction, round III) meetings (Moult et al. 1999).
To some extent, this is because the specific features to be
compared dictate the similarity measure and algorithm of
choice. Our aim here is to compare theoretical models of
protein folds and to evaluate fold predictions, and therefore
we are interested in determining structural similarity at the
fold level. We started with the intuitive idea that a predic-
tion is successful when the modeled structure is signifi-
cantly more similar to the target fold than to any other
known fold. Consequently, the evaluation method should be
consistent with consensus classifications of experimental
protein structures in folds, such as the manually derived
SCOP database by Murzin and collaborators (Murzin et al.
1995; Lo Conte et al. 2000).

In what follows we elaborate on these ideas: First, we
developed a fast structural alignment approach that (1) is
sequence-independent, (2) focuses on model Ca coordi-
nates, and (3) avoids references to sequence or contact
maps. This allows possible registration shifts that tend to
happen in secondary structure assignments and different
resolution levels, and also takes into account the fact that
similar models can have different contact maps. The method
is also capable of considering only portions of the target
protein, avoiding the need to model the complete chain of
the target. Second, and following seminal work by Levitt
and Gerstein (1998) and Abagyan and Batalov (1997), we
assess the final structural alignment obtained with the algo-
rithm by attaching a statistical significance to the similarity
score in the form of a P-value, that is, the probability that a
better score can occur by chance when comparing two un-
related folds provided by Nature. We then demonstrate the
utility of this approach by analyzing models from the
CASP3 contest (Moult et al. 1999). Finally, we briefly dis-
cuss the applicability of our approach in different areas of
structural genomics.

Results

Structural alignments with MAMMOTH

First, we analyzed the quality of the structural alignments
produced by MAMMOTH. For that, we compared the frac-
tion of residues aligned using a set of protein pairs com-
prising some difficult cases. The set is described by Jung
and Lee (2000) in their Table 2 and can be found in our
Table 1. MAMMOTH provides structural alignments simi-
lar to those obtained by other approaches such as Dali
(Holm and Sander 1993), Vast (Madej et al. 1995; Gibrat et
al. 1996), ProSup (Lackner et al. 2000), and SHEBA (Jung
and Lee 2000). Inspection of the superimposed structures
confirmed the agreement between the different algorithms
(not shown). There is, however, one exception: for the lacx-
1tnf_A pair, MAMMOTH fails to find the correct structural
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Table 1. Comparison of structural alignments obtained with
MAMMOTH and with other methods

Protein 1 Protein 2 MAMMOTH SHEBA OTHERS
lacx Icob_B 77 69 90 (1)
lacx 1tmf-A 25 — 80 (1)
Ipts_A Imup 75 72 76 (1)
2gbl lubq 45 44 42 (2)
2gbl 4fxc 42 44 39 (2)
lubq 4fxc 60 54 48 (2)
Iplc 2rhe 64 49 50 (2)
1plc lacx 51 57 48 (2)
lacx Irbe 62 59 49 (2)
laba 1trs 65 64 60 (3)
laba 1dsb_A 36 52 47 (3)
laba 1pbf 47 51 36 (4)
Imjc Stss_A 42 54 50 (4)
1pgb Stss_A 45 43 43 (4)
2tmv_P 256b_A 68 68 64 (4)
Itnf_A Ibmv_I 54 80 71 4)
lubq 1frd 60 56 48 (4)
2rsl_C 3chy 55 59 56 (4)
3chy Lref 99 89 75 4)

This set is taken from Jung and Lee. Table 2 (Jung & Lee, 2000). For each
pair, the number of aligned residues after optimal structural alignment, as
obtained with the different programs, is shown.

(1) Dali (Holm & Sander, 1993); (2) MLC (Boutonnet et al., 1995); (3) VAST
(Madej et al., 1995; Gibrat et al., 1996); (4) ProSup (Lackner et al., 2000)

alignment. SHEBA also has problems with this pair, but
Dali is able to find a good solution. In Figure 1 we show two
examples of typical structural alignments obtained with
MAMMOTH.

A measure of the computational time needed by
MAMMOTH as a function of problem size is given in Fig-
ure 2, which shows running times for various size protein
pairs, as computed in a 500Mhz Alpha workstation. There
are 10 million comparisons in this plot, averaged so that
each point is the average of 250 comparisons. The double
behavior of MAMMOTH running times is due to the dif-
ferent behavior of the MaxSub routine in different length
regimes. There is a “phase transition” in the average number
of cycles needed for convergence in MaxSub around the 10*
residues boundary, apparently due to the increase in struc-
tural complexity. As can be observed, for a typical com-
parison of a pair of small proteins (~100 residues), compu-
tation takes ~0.02 sec (single processor). The algorithm is
faster than most approaches and runs roughly at the same
speed as SHEBA or PrISM (Yang and Honig 2000). How-
ever, it should be noted that MAMMOTH is more general,
as it does not rely upon some of their approximations.
SHEBA, for example, is not a pure structural alignment
algorithm, since it establishes residue correspondences
based on a previous sequence alignment of the proteins to
align. PrISM, on the other hand, computes a prealignment
using secondary structure vectors, and this makes it inad-
equate for low-resolution theoretical models or irregular
proteins. Of course, additional gain in speed could be ob-
tained in MAMMOTH if a secondary structure filter is ap-
plied. Overall, MAMMOTH is able to provide a good com-
promise between alignment quality, computational speed,
and generality.

Fig. 1. Examples of structural alignments obtained with MAMMOTH. (A) Alignment of 1pts_A with 1mup. The structural alignment
score is 9.52; (B) Structural alignment of 1pgb with Stss_A. The score in this case is 6.29.
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Fig. 2. Running time as a function of problem size. In the x axis, the product of the length of the two sequences being compared is
shown, whereas in the y axis, the structural alignment time in seconds is plotted.

Statistical significance of MAMMOTH scores

An all-against-all comparison of different protein folds
(Table 1A, Appendix) was carried out with MAMMOTH.
The set of different folds compared was selected from the
SCOP database as described in Materials and Methods. Fig-
ure 3 summarizes the results of this calculation as a plot of
the relationship between length of the shortest protein being
compared and percentage of structural identity (see Mate-
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Fig. 3. Background distribution of random structural alignments. The
percentage of structural similarity (PSI) after superimposing with
MAMMOTH pairs of protein structures with different folds (see Materials
and Methods and Table 1A in the appendix) is plotted as a function of the
length of the shortest protein (Norm) being compared. All pairs of proteins
in Table 1A are compared in the figure.

rials and Methods) after optimal structural fitting. The dis-
tribution of points in Figure 3 follows the familiar exponen-
tial decay observed by Sander and Schneider (1991) and
Abagyan and Batalov (1997) in alignments of structurally
unrelated sequences, suggesting a similar law for the back-
ground distribution of random structural alignments with
MAMMOTH.

Thus, the raw data of percentage of superimposed resi-
dues (Fig. 3) were used to fit an extreme value distribution
(EVD; Gumbel 1958) using a procedure similar to that put
forward by Abagyan and Batalov (1997) and described in
Materials and Methods. Figure 4 shows examples of fitting
accuracy at two different sequence length intervals, com-
paring the frequency histogram obtained from the data and
the fitted EVD curve. Figure 5 shows the curve fitting of
these parameters to a power law of the length of the shortest
protein being compared. This allows us to obtain the ana-
lytical P-value only from the knowledge of the length of the
shortest protein and the percentage of superimposed resi-
dues. In order to test the accuracy of this P-value, a second
test of all-against-all structural alignments was carried out
(see Materials and Methods and Table 2A, Appendix). This
time the analytical probability was compared to the calcu-
lated probability using the test set. Figure 6 shows an ex-
cellent agreement between both curves in the most relevant
interval, up to the 95% confidence level. MAMMOTH is
able to detect 50% of the true fold relationships in SCOP at
the 99% confidence level, and 60% of them at the 95%
confidence level. These numbers are comparable to results
obtained with other automatic structure comparison meth-
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Fig. 4. Extreme value distribution (EVD) fit at different length intervals
(Norm). In bars is the frequency histogram of PSI values; in red, the EVD
curve using parameters derived from the frequency histogram; in magenta
is the curve obtained using EVD parameters derived from a fitting to Norm
(see text for details). (A) Norm = 100; (B) Norm = 200.

ods. For example, Yang and Honig (2000) reported 54%
coverage at the 99% confidence level with PrISM. There are
no published data regarding Dali. However, we have con-
ducted similar tests using DaliLite (Holm and Park 2000),
which indicated that DaliLite is able to detect 60% of SCOP
relationships at the 99% confidence level, a slightly better
performance, but similar to that obtained with MAMMOTH
or PrISM. We conclude that MAMMOTH shows perfor-
mance consistent with other structural alignment methods
when comparing experimental protein structures, and that
the P-value estimation provided by the EVD fitting is rather
accurate.
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Fig. 5. Length-dependent estimate of EVD parameters. Parameters fitted
at each sequence interval are in turn modeled as a function of the length of
the shortest protein in the comparison.

Protein fold recognition with experimental structures

So far we have shown evidence that MAMMOTH partitions
fold space in a way somewhat similar to that implicit in the
SCOP database. We were also interested in testing the con-
sistency and robustness of this partition, that is, the ability
of the method to recognize entire families of members be-
longing to the same fold in SCOP. We selected fold families
classified in SCOP with more than 15 members per family,
and from each fold family we randomly picked one repre-
sentative member, and then carried out comparisons with all
other members of that fold family. We then studied how
these families distribute as a function of MAMMOTH mean
recognition ability (i.e., percentage of members above the

MAMMOTH P-values
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Fig. 6. Coverage-error plot for MAMMOTH scores. See text for details.



Automated model comparison and evaluation

4.5 threshold score) and MAMMOTH mean scores (aver-
ages over all members in the family). Figure 7 shows the
results in the form of a density contour plot, contoured at
0.01 density. The figure indicates that MAMMOTH scores
provide consistent partitions: For most cases, more than
80% of members are recognized. And for those families
with more than 80% of recognized members, the lowest
level of the density curve is close to the boundary of
—In(P) = 4.5 (P-value=0.01), the threshold for statistical
significance (99.0% confidence level). Thus, the cutoff for
a statistically significant similarity is close to the boundary
of mean similarity found among family members. This is
another indication that, within MAMMOTH, the extent of
fold space covered by members of each fold type is large,
although highly variable depending on the specific group. A
cutoff of —In(P) = 4.5 seems to be adequate to classify fold
members together. In Figure 8, we have plotted the fre-
quency of fold families as a function of the percentage of
members recognized at this cutoff. Again, for most fold
families, 80% or more of their members are recognized, and
the proportion of false positives is small and evenly distrib-
uted (Fig. 8). Our view after these experiments is that the
complete protein fold space appears to be quasi-discrete,
with some overlap between different folds. That is, fold type
attractors seem to be clearly defined in fold space, but the
boundaries between some of the fold types are diffuse,
populated by intermediate structures that may be indicative
of evolutionary pathways. Other authors have arrived at
similar conclusions through different analyses (Domingues
et al. 2000; Yang and Honig 2000).
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Fig. 7. Contour plot for family recognition. The percentage of family
members recognized is plotted in the x axis; the y axis indicates the mean
MAMMOTH score (—In(P)) for that family. A density surface is contoured
in the x—y plane using 0.015 as contouring threshold. See text for additional
details.
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Fig. 8. Cumulative frequency of family recognition at the detection thresh-
old. (A) Percentage of members recognized per family. (B) Percentage of
false positives.

Finally, in Figure 9 we have plotted the mean fold family
score as a function of the length of the representative protein
family member (the length of the query protein described
above). Fold families were separated, taking into account
the average percentage of residues structurally aligned with
that member in four classes. Protein families with an aver-
age percentage of aligned residues between 0 < PSI = 25
are colored in red, giving regression equations

y = 0.0167x if x = 200, y = 2.9996 - 1073x
+ 2.74 if x > 200.

Protein families with an average percentage of aligned resi-

dues in the interval 25 < PSI = 50 for all family members
are colored in green, giving regression lines

y = 0.0351x if x = 200, y = 0.0226x + 2.5 if x > 200.
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Fig. 9. Model quality using MAMMOTH scores. Each point is the mean
P-value within each fold family as a function of the query protein length.
Lines are a bilinear fitting using a cutoff at 200 residues (x <200 and
x>200). Points correspond to individual families, and are colored as a
function of PSI: red (0<PSI=25), green (25<PSI=50), cyan
(50 < PSI = 75), blue (75 < PSI = 100).

Cyan represents families in the interval 50 < PSI = 75,
giving regressions

y = 0.0796x if x = 200, y = 0.0294x + 10.4 if x > 200.

Finally, protein families in the interval 75 < PSI = 100 for
all family members are colored in blue, with equations

y = 0.1252x if x = 200, y = 0.0427x + 16.5 if x > 200.

As expected, protein structures with low percentages of
aligned residues have low MAMMOTH P-values. There is
a bilinear dependency between MAMMOTH scores and
protein length within each quality category, with a change in
slope at the threshold of ~200 residues. The green line rep-
resents roughly the threshold for correct fold identification,
and can be used to correctly assess a fold prediction taking
protein size into account. Despite this dependency on pro-
tein size, it is interesting to note that, according to the re-
gression equation, a typical pair of 150-residue proteins
having about 50% of their residues aligned would have a
score of 5.2, only slightly above the 4.5 threshold marking
a statistically significant match. Again, this is an indication
of the quasi-discrete distribution of protein structures in fold
space.

Thus, as a summary, for a typical protein structure pre-
diction in the 100-200-residue range, predictions with a
score below ~4.00 can be considered definitely wrong. Pre-
dictions with a score between ~4.00 and ~5.25 on average
are borderline, with some well predicted pieces in an overall

2612 Protein Science, vol. 11

wrong fold. Scores above ~5.25 are, on average, consistent
with a correct fold prediction.

Benchmarking on CASP3 predicted models

Once the evaluation method has been described, we proceed
to test it by comparing its performance with datasets of
manual, consensus evaluations of predicted protein struc-
tures. In detail, evaluation performance was tested by com-
paring model rankings given by MAMMOTH P-values
(more accurately the —In(P) scores) with rankings produced
by Murzin (1999) in his analysis of the fold recognition
section in CASP3 (Moult et al. 1999). Figure 10 shows the
relationship between the mean score by group given by
Murzin and the mean score produced by MAMMOTH.
Each point in the plot was obtained by computing the av-
erage over all models submitted by each different group
participating in CASP3. MAMMOTH scores explain
roughly 50% of the variance in the Murzin scores. Thus,
there is a reasonably good correspondence between the
mean MAMMOTH scores calculated within each predicting
group participating in CASP3 and the mean Murzin evalu-
ation score made by manual comparison. An interesting
result to note from Figure 10 is the low value of the
MAMMOTH mean scores, below 4.0 for most groups.
Thus, the expected structural similarity between the models
produced for most groups and the experimental structures is
not much better than that the expected value obtained by
randomly picking any pair of folds in the database. This is
an important feature of the evaluation method: The scoring
system is connected to our knowledge of protein structure.
Figure 11 displays the results of another quality check with
MAMMOTH. It shows all models submitted to CASP3 su-

4.0 4 Y=0.0682x4+0.75743
R=0.4793

3.5 1

—in{P)

0 10 20 30 A0

Murzin score

Fig. 10. Correlation between manual evaluation and automated scoring.
Mean score by group given by Murzin against mean score produced by
MAMMOTH. Each point is an average over all models submitted by each
different group participating in CASP3.
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Fig. 11. Models submitted to CASP3 in the quality framework described
in Figure 9. Each point is a model represented by the target length and the
P-value obtained in the MAMMOTH superposition.

perimposed onto the trend lines derived in Figure 9. Only a
few models with good quality were created.

Comparison with other methods in prediction evaluation

We also compared MAMMOTH with other previously pro-
posed approaches to model evaluation (see Materials and
Methods). Using the same set of predicted structures from
CASP3, the Spearman’s rank correlation coefficient was
calculated between all pairs of different evaluation methods.
We used rank correlation because of its inherent higher
robustness (Langley 1970). From the rank correlation ma-
trix we then derived the tree shown in Figure 12 by single
linkage cluster analysis (Johnson and Wichern 1998) of the
Spearman correlation coefficients. MAMMOTH is the
evaluation method with its scoring scheme closest to Mur-
zin’s ranking, so that both of them have a similar behavior
in comparison with the rest of the score systems. For ex-
ample, scores computed within Dali are less similar to each
other than Murzin’s and MAMMOTH scores are between
them.

It is important to take into account that Orengo made her
evaluation of CASP3 models in a subset of all targets and
groups evaluated by Murzin. In order to test whether there
is a significant difference between both subsets, we per-
formed a Wilcoxon’s sum of ranks test (see Materials and
Methods) using Murzin’s, Dali, PrISM, and MAMMOTH
scores (for which we had available both sets of numerical
data). For all methods except Dali, differences in ranks are
not significant, and can be explained by differences in
sample size. This is not the case with Dali scores, however,
although in this case ranking of correlations is still pre-

served. We conclude from this analysis that the tree shown
in Figure 12 is robust and is not likely to change with an
increase in sample size, although some of the branches
could fluctuate to some extent, as seems to be the case for
the Dali branch. All correlation coefficients used to build
the tree on Figure 12 can be found in Table 2.

How can we explain the improvement in fold evaluation
achieved by MAMMOTH? We have studied errors and suc-
cesses of the different approaches to try to detect underlying
patterns that could explain these differences, and will dis-
cuss some examples. Methods based on counting the num-
ber of fragments below a certain RMS threshold tend to fail,
not surprisingly, when the predicted model is built from
short fragments assembled in 3D. This is the case, for ex-
ample, of some predictions for target t0071 in CASP3,
where Group 217 made a threading model using structural
fragments shorter than 25 residues. This model is ranked
second both by Murzin and MAMMOTH; however,
Orengo-Lesk failed to give it a high rank. We have also
observed that assessment methods based on compatibility of
3D environments tend to fail if there are shifts in model
registration, even in cases where the overall fold is pre-
served. For example, Group 5 submitted a threading model
for target t0071 (Figure 13A), which is ranked in fifth place
by Murzin and in fourth place by MAMMOTH. The struc-
tural alignment produced by MAMMOTH shows a consid-
erable shift in registration, even though the overall fold is
well reproduced. There are also problems associated with
multidomain proteins, probably related to the way the simi-
larity score is normalized. For example, the best model sub-
mitted for target t0071, according to Murzin’s criteria, was
ranked only fifth with PrISM. Finally, there are also con-
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Fig. 12. Cluster analysis of the different evaluation methods. See text for
details.
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Table 2. Correlation matrix between the different evaluation methods

Oreago Vast Vast PrISM PrlSM  PrISM
Murzin Dali Z Dali sup Mammoth M-sup O-Lesk O-rmsd ss sup  rmsd SCO sup psd  GDT-TS

Murzin 1 0.38 -0.19 0.84 0.78 0.6 0.53 0.01 053 053 0.07 0.34 0.08 0.49
Dali Z 0.38 1 0.6 -0.07 -0.06 0.06 0.19 0.14 052 052 053 -0.14 0.53 0.11
Dali sup -0.19 0.6 1 -0.36 -041 -0.16 0.18 0.17 029 029 074 -0.16 0.52 0.26
MAMMOTH 0.84  -0.07 -0.36 1 0.91 0.54 056  -0.02 0.4 04 -0.13 023  -0.05 0.26
M-sup 0.78  -0.06 -0.41 0.91 1 0.72 0.41 0.06 041 041 -0.22 028 -0.12 0.17
O-Lesk 0.6 0.06 -0.16 0.54 0.72 1 0.23 0.46 024 024 -0.06 0.61 -0.09 0.42
O-rmsd 0.53 0.19 0.18 0.56 0.41 0.23 1 0.38 053 053 059 -0.04 0.72 0.07
O-ssap 0.01 0.14 0.17 -0.02 0.06 0.46 0.38 1 035 035 049 0.21 0.56 -0.16
V-sup 0.53 0.52 0.29 0.4 0.41 0.24 0.53 0.35 1 1 053 -0.23 0.52 0.05
V-rmsd 0.53 0.52 0.29 0.4 0.41 0.24 0.53 0.35 1 1 053 -023 0.52 0.05
P-score 0.07 0.53 0.74 -0.13 -0.22  -0.06 0.59 0.49 053 053 1 -0.009  0.88 -0.09
P-sup 0.34 0.14 0.16 0.23 0.28 0.61 -0.04 021 -023 -0.23 -0.009 1 -0.20 0.42
P-psd 0.08 0.53 0.52 -0.05 -0.12 -0.09 0.72 0.56 052 052 088 -0.20 1 0.07
GDT-TS 0.49 0.11 0.26 0.26 0.17 0.42 0.07  -0.16 0.05 0.05 -0.09 0.42 0.07 1

For each pair of evaluation scores, the Spearman correlation coefficient was computed using the data set of models shown in Table 3A of the Appendix.

siderable sources of error associated with distortions of sec-
ondary structure elements, particularly for ab initio models.
Structure alignment programs designed to classify experi-
mental protein structures, and not specifically to evaluate
predictions, tend to suffer from artifacts arising from this. It
is the case of the model submitted by Group 5 for target
t0083 (Fig. 13B), considered by Murzin as the second-best
model for this target. Whereas Dali did not find a significant
structural similarity between target structure and model,
MAMMOTH scored it with —In(P) = 7.35. Thus, the im-
provement achieved by MAMMOTH seems to be the result
of a successful design to explicitly avoid some of these
shortcomings.

Discussion

A new algorithm for protein structural alignment is de-
scribed. As have other authors (Holm and Sander 1993;
Madej et al. 1995; Gibrat et al. 1996; Shindyalov and
Bourne 1998; Jung and Lee 2000; Lackner et al. 2000; Yang
and Honig 2000), we resorted to the use of heuristics to cast
the problem in a computationally tractable form. We divide
the process into two steps: first, we compute the optimal
similarity of the local backbone chain to establish residue
correspondences between residues in both structures; in a
second step, we then compute the largest subset of residues
found within a given distance threshold in cartesian space.
Insertions, deletions, and registration shifts between both
structures are introduced in the first step. The approach is
reminiscent of other structural alignment algorithms, al-
though there are some clear differences. First, MAMMOTH
uses unit-vector root mean square (Chew et al. 1999; Kedem
et al. 1999) distances in the comparison of local structures,
instead of the more widely used secondary structure ele-
ments. This is important when evaluating structure predic-
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tions because it avoids relying on secondary structure as-
signments, known to be very sensitive to the exact position
of the backbone atomic coordinates (Labesse et al. 1997). It
also allows the comparison of structures with a small per-
centage of defined secondary structure motifs, such as di-
sulfide-rich small proteins, which cannot be handled by the
more traditional methods. Second, the heuristic procedure
used to search for the largest core with minimum RMS
(Siew et al. 2000) is able to accelerate considerably the
computation with respect to alternative approaches. The
joint use of the above two features yields a fast, simple,
deterministic, and yet completely general algorithm. This is
demonstrated by the quality of the structural alignments and
cores detected in difficult cases, with results comparable to
other well known programs. Finally, the use of the EVD
provides a rigorous score to evaluate structural alignments,
particularly in structure prediction, as shown in the evalu-
ation of CASP3 results.

In agreement with previous observations using percent-
age of sequence identity or sequence similarity with random
sequence alignments, we show that the percentage of struc-
tural superimposition in random structural alignments also
follows the well known EVD. This is not unexpected be-
cause a structural alignment, as well as its sequence coun-
terpart, involves the optimization of a similarity score. The
same distribution was reported by Levitt and Gerstein
(1998) using a different metric to compute structural dis-
tances and a different optimization algorithm. A comparison
between analytical and observed curves shows that
MAMMOTH provides accurate estimates of the real P-val-
ues. On the other hand, the ability of MAMMOTH to re-
produce SCOP fold classifications is similar to that of other
available methods.

The structural comparison method described here has
been successfully tested as an approach to evaluate models
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Fig. 13. Some typical “mistakes” in evaluation produced by other methods. The experimental structure is shown as a cartoon model.
The matched portion of the theoretical model is shown in magenta, while the unmatched region is shown in gray. (A) t0071_g5; (B)
t0083_g190.

generated by protein structure prediction methods. A com-
parison of different evaluation methods using the CASP3
benchmark indicates that MAMMOTH provides model
quality rankings more consistent than those produced by
other methods with the criteria provided by a human expert.
It is instructive to compare the performance of different
approaches when using experimental versus modeled struc-
tures. Although MAMMOTH, Dali, and PrISM, for ex-
ample, show similar ability to recognize structural ho-
mologs based on experimental coordinates, there is a con-
siderable difference when the objective is the comparison of
modeled structures. In this case, MAMMOTH is consider-
ably better than the other approaches. This highlights the
fact that the problems involved in comparing modeled struc-
tures with their experimental counterparts and in comparing
two experimental structures are different.

Due to its speed, insensitivity to differences in length, and
rigorous evaluation score, MAMMOTH can be an impor-
tant tool for protein structure comparison studies in struc-
tural genomics applications, particularly in those cases
where partial or low-resolution models are of interest. For

example, Baker and coworkers recently reported evidence
that ab initio structure prediction followed by global struc-
ture comparison against the protein structure database can
give insight into protein structure and function in cases
where sequence-based methods alone fail (Simons et al.
2001). It can be reasonably expected that in the near future
it will possible to apply this two-stage approach to small
proteins at genomic scale. The good performance shown by
MAMMOTH in this work makes it an ideal tool for the
second part of this protocol, and recent results support this
conclusion (Bonneau et al. 2002).

Additionally, MAMMOTH seems to be an adequate tool
to be used in more fundamental studies of protein structure.
For example, it allows finding and classifying, in a general
way, recurrent structural motifs present in protein struc-
tures. These motifs are possibly responsible for the quasi-
discreteness of fold space described by us in this paper and
by others before us (Domingues et al. 2000). There is con-
siderable interest in the structural biology community to
derive a full inventory of these structural building blocks,
and several approaches to the subject have already been
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made (Holm and Sander 1998; Kleywegt 1999; Shindyalov
and Bourne 2000; Reddy et al. 2001). Likewise, the ability
of MAMMOTH to detect structural similarities using query
substructures or building blocks can be of interest in ap-
proaches aimed at fitting models to electron density maps
using databases of known protein structures (Diller et al.
1999a,b; Perrakis et al. 1999; Lamzin and Perrakis 2000;
Jiang et al. 2001).

Finally, the high formal correspondence of MAMMOTH
program structure to sequence alignment programs suggests
that it should be straightforward to develop multiple struc-
ture alignment algorithms using MAMMOTH as a starting
point. Several groups are actively addressing the problem of
multiple structural alignment (Guda et al. 2001; Leibowitz
et al. 2001a,b). With the current increase in the mean num-
ber of homologous protein structures in the database, it is
important to develop more efficient algorithms for this
problem. Work is in progress along these directions.

Materials and methods

MAMMOTH algorithm

The evaluation method focuses on model coordinates, avoiding
references to sequence or contact maps while allowing registration
shifts and different resolution levels. The method considers only
the modeled portion of the target structure, avoiding the need to
model the complete chain of the target. In common with other
researchers, we reduce the complexity of the problem by using a
heuristic approach: We first find the structural alignment that pro-
vides the optimal local similarity of the protein backbone (i.e.,
optimal local structure similarity of the complete amino acid se-
quence of both proteins) and then try to find the maximum subset
of residues below a predefined distance in 3D space. The method
consists of four basic steps:

(1) From the Ca trace, compute the unit-vector root mean
square (URMS) distance between all pairs of heptapeptides of both
model and experimental structure (Kedem et al. 1999). This is a
measure sensitive to local structure, originally suggested by Chew
et al. (1999). Consider a protein as described by its sequence of
a-carbons (Ca). For each successive pair of Co atoms along the
backbone chain, we can record the unit vector in the direction from
Ca i to Ca i+1. We can then place all recorded unit vectors at the
origin, so that the backbone is mapped into vectors in the unit
sphere. The URMS distance between two protein segments A and
B (heptapeptides in our case) can then be computed by determining
the rotation matrix which minimizes the sum of the squared dis-
tances between the corresponding unit vectors, using standard
techniques (McLachlan 1979). The square root of the resulting
minimum sum is defined as the URMS distance between hepta-
peptides A and B. It has been shown that the URMS metric pro-
vides an efficient detection of substructure similarities in proteins
(Chew et al. 1999; Kedem et al. 1999).

(2) Use the matrix derived in step 1 to find an alignment of
local structures that maximizes the local similarity of both the
model and the experimental structure. First, URMS values need to
be transformed to similarity scores. This is accomplished by noting
that, as discussed by Chew et al. (1999), the expected minimum
URMS distance between two random sets of n unit vectors
(URMSR®) is:
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20-"— (1)
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Thus, from eq. (1) we can then compute a similarity score (S, )
between any two heptapeptides A and B as:

URMS® =

(URMS® — URMS*?)
A URMS®

A(URMS® URMS*?) )

Here, A(URMS®, URMS*?) = 10 if URMS® > URMS*? and
A(URMS®, URMS*®) = 0 otherwise. Therefore, S,, provides a
similarity scale between O and 10. Entries S, ; are used to build the
similarity matrix S obtained by comparing all possible heptapep-
tides in both proteins. Dynamic Programming is then applied to
this similarity matrix in order to build an alignment of both struc-
tures on the basis of their backbone (local) similarity. This align-
ment is produced using a global alignment method with zero end
gaps (Needleman and Wunsch 1970). Internal gaps are penalized
using an affine gap penalty function of the form g(k) = a+pk,
where k is the number of gaps and o and (3 are the opening and
extension penalties, respectively. Trial and error tests (see below)
indicated that values of o = 7.00 and 3 = 0.45 gave good results.

(3) Find the maximum subset of similar local structures that
have their corresponding Ca close in cartesian space. Close is
considered here as a distance less than or equal to 4.0 A. The
method to find this subset is a small variant of the heuristic
MaxSub algorithm (Siew et al. 2000; http://www.cs.bgu.ac.il/
~dfischer/MaxSub/). Once the algorithm converges, the percent-
age of structural identity (PSI) is computed, defined as the per-
centage of corresponding residues below 4.0 A in 3D space, mea-
sured with respect to the shortest structure.

(4) Calculate the probability of obtaining the given proportion
of aligned residues (with respect to the shortest protein model) by
chance (P-value). The P-value estimation is based on extreme-
value fitting of the scores resulting from random structural align-
ments, following the work of Abagyan and Batalov (1997). The
Type-1I extreme value distribution based on the largest extreme,
also known as the Gumbel distribution, has the following general
form for its probability density function (Gumbel 1958):

1 —(x—a) —(x—a)

fix) = 5 e » € P 3)

where a is the so-called location parameter and b is the scale
parameter. We are interested in the probability of having a ¢ value
greater than x, P(t > x). This value can be found by integrating
equation (3) from ¢ to infinity, yielding:

—(x—a)

P(t>x)= ftwﬂx)dx =l-e¢ b 4)

In order to apply eq. (4) we need parameters a and b. For their
derivation it is more convenient to work with the probability of
having a value ¢ smaller than or equal to x:

—(x—a)

Pi=x)=e“ ? 5)

Taking logarithms in eq. (5) and setting Q(x) = P(t = x) and
P(x) = P(t > x), we have Q(x) + P(x) = 1. Equation 5 can then be
transformed to the following linear form:
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a 1

In(—In(1 — P(x))) = P (6)

Parameters a and b can now be estimated from a linear fitting
between x, the percentage of aligned residues (PSI) obtained from
the structural alignment algorithm in step 3, and In(-In(1-P(x))),
where P(x) is computed as an accumulated sum of the observed
frequencies with values greater than x. The reason for using P(x)
instead of Q(x) in eq. 6 is in order to give a larger weight to the tail
of the distribution, which contains the most critical part of the
curve. Once a and b are found, expected values for the mean . and
variance ¢” can be derived using the method of moments, giving
relationships:

w=a+vb @
2

2T

o = 6 b 3)

where y = 0.5772 is the well-known Euler-Mascheroni constant
(Gumbel 1958). Introducing eqgs. 10 and 11 in eq. 4, the P-value as
a function of z-score is obtained:

jus
——=zty

PZ>7)=1- eﬂf(\/; ©)

Parameter optimization

Several parameters are used within the program: the length of the
peptide in the URMS calculation, the similarity score derived from
the URMS computation, the gap opening and extension penalties,
the maximal distance between Ce, and the a and b parameters in
the EVD. With the exception of the gap penalties and a and b
parameters, no exhaustive optimization has been carried out. Gap
penalties were optimized using a grid-like search, once the rest of
parameters were fixed. The a and b parameters have been dis-
cussed previously. For the rest, values were initially established in
order to avoid an undesirable combinatorial explosion in parameter
space, based on the following considerations: (1) Number of resi-
dues for local similarity: This number has to be large enough to
consider the different types of secondary structure. Four residues
are required to define a helix turn and a B-turn. Thus, this would
be a lower bound. However, calculations with ideal secondary
structures (data not shown) indicated that helices and turns are
difficult to distinguish by the URMS value with only four residues.
Adding flanking residues provides a window of six residues, able
to distinguish B-turns and helices. A seven-residue window was
found to be more appropriate, however, probably because it can
consider a complete two-helix turn. We observed that larger values
begin to flat correct alignment pathways in similarity matrices, and
therefore selected a heptapeptide. (2) Random URMS score: This
value is established analytically, on the basis of the expected ran-
dom values, and simply scaled between 0 and 10. Therefore there
are no parameters to fit. (3) Maximal distance between Ca: Based
on the value used in the MaxSub algorithm, together with visual
observation of the results. The original MaxSub algorithm uses 3.5
A. When dealing with models, a slightly larger value of 4 A was
deemed necessary.

Computation of coverage-error plots

From the all-versus-all comparison, we compute the coverage-
error plot applying a procedure similar to that described by Levitt

and Gerstein (1998): (1) For each pair we determine its P-value as
computed by eq. 12, and note whether the pair is a true-positive or
a true-negative; (2) We sort all pairs by increasing P-value; (3) We
count down the list from best to worst and at each point in the list
we find out the number of false positives and from that, the ob-
served P-value; (4) We also compute the fraction of true positives
that are more significant than the threshold P-value; this number
defines the coverage, which should be as large as possible. On the
other hand, observed and calculated P-values should be as close as
possible.

Comparison with other evaluation methods

In order to assess the relative performance of MAMMOTH, we
compared the evaluation scores provided by this approach with a
set of 11 different evaluation methods previously used in CASP for
structure comparison and model evaluation. All methods were
benchmarked against the assumed gold standard given by Mur-
zin’s manual ranking of models submitted to the CASP3 meeting
(Murzin 1999). When assessing the merits of the different ap-
proaches discussed here, it is important to keep in mind that some
of these algorithms were not specifically developed to compare
predicted models with their corresponding experimental structures,
but rather to compare and classify pairs of experimental structures.
The following sets of automatic criteria for assessment of the
different models were compared with that used by MAMMOTH:

A. During CASP3, Orengo (Orengo et al. 1999) evaluated the ab
initio predictions using three different criteria: the amount of
nonoverlapping segments of 25 residues with an RMS value of
4.0 A (Lesk 1997, referenced here as orengo-lesk); the simi-
larity of the structural environment at each residue position
(Taylor and Orengo 1989; orengo-ssap); and the largest frag-
ment with an RMS of 4.0 A (Orengo et al. 1999; orengo-rmsd).
All three measures were compared with the MAMMOTH
score.

B. Dali (Holm and Sander 1993) is a well known program for
protein structure comparison. The Dali Z-score has been fre-
quently used in the evaluation of structural predictions (Ortiz et
al. 1998b; Simons et al. 2001). We have studied here both the
Z-score (dali) and the percentage of superimposed residues
(dali-sup) provided by the DaliLite package (Holm and Park
2000).

C. Vast (Madej et al. 1995; Gibrat et al. 1996) is another auto-
matic method frequently used for protein structural alignment.
Vast scores were used in both CASP2 and CASP3 to evaluate
predicted structures. Here we used as scores the RMSD of the
structural alignment (vast-rmsd) and the percentage of super-
imposed residues (vast-sup).

D. PrISM (Yang and Honig 2000) is a recently reported multi-
purpose program for protein modeling that also evaluates struc-
tural relationships between protein structures by using a new
measure of protein structural distance. We used as scores the
protein structural distance (prism-psd); the secondary structure
alignment score (prism-score) and the percentage of superim-
posed residues and calculated by PrISM.

E. Finally, the GDT method (Zemla et al. 1999) was also in-
cluded. The score (gdt-ts) is obtained from the global distance
test (Zemla et al. 1999). It takes into account the percentage of
residues that can be found within a given distance threshold
between model and target. The gdr-ts measure is an average of
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percentages obtained at 1, 2, 4, and 8 A and has been used in
previous assessments of CASP results by the Zemla team.

Comparisons were restricted to groups and targets evaluated
jointly both by Murzin and Orengo during CASP3. These models
are a subset of all models evaluated by Murzin during CASP3. The
set of models included in the evaluation is listed in Table 3A of the
Appendix. In order to test whether this subset is representative
enough of the results that could have been obtained by using all
models evaluated by Murzin, we used the Wilcoxon’s sum of ranks
test (Langley 1970) using the Murzin, Dali, MAMMOTH, and
PrISM scores (for which we had all scores for both sets). We then
compared the set of Murzin evaluations (all models) with the set
evaluated jointly by Orengo and Murzin (subset). Our null hypoth-
esis was that there are no significant differences in score distribu-
tion between both sets of models, so that results of the subset are
representative of the complete set in CASP3. The test is as follows
(Langley 1970): First, the scores of both samples (Murzin’s set and
the Orengo-Murzin subset) are pooled together. Then, the com-
bined set of scores is sorted, and for each measurement a rank
value is assigned. The smallest rank total R is then defined as the
smaller of the sum of ranks coming from each sample. If distri-
butions come from different underlying populations, unequal rank
totals are expected. The probability of getting unequal rank totals
as a consequence of chance variation can then be determined from
R. The significance of the smaller rank total is found by calculating
the statistic z given by the equation:

2R —ng(ny +ng+1)

z (10)

nang(ng +ng+ 1)

3

where nj is the number of measurements in whichever sample
possesses the smaller rank total. The z-statistic distributes normally
under the null hypothesis, and therefore the significance of z can
finally be calculated using a normal distribution (Langley 1970).

Selection of structural datasets

Fold set selected to compute the background
random distribution (Table 1A, Appendix)

This set was used to fit the EVD and to obtain the P-value esti-
mation. It comprises a set of different folds without significant
sequence identity (25% cutoff in sequence identity), selected by
combining the pdb_select list from Hobohm and coworkers
(Hobohm et al. 1992; Hobohm and Sander 1994) with the SCOP
database.

A test set selected to compute coverage error plots
(Table 2A, Appendix)

In this test set we first selected a representative set of proteins of
different folds as in the previous case, but in addition we incor-
porated for each fold a second representative.

Fold families

All fold families from SCOP with more than 15 members per
family were selected. We were able to select families belonging to
115 different folds, with 22 of them from the all-« class, 24 from
the all-B class, 20 from the o/ class, and 21 from the o+f3 class.
The rest (18 folds) belongs to other classifications in SCOP.

Table 1A. PDB ID of the set of protein strutures used in P-value parameter estimation

12asA 16pk lal2a lalia lalx lalyL la28a 1a2xB la34a la3aD
la49a laéda laém ia73a 1a92a laa7a laaf laba labv labz
lad2 ladn laep lafod lafp lagrH lah? laho lahsA laie
laihB lail laiw laij lajsA lak4cC lako lam9A lachB laol
lap8 lapj larb lauz laxn lay7B 1bOmA 1b0OnB 1b0yA 1b10A
1b2nA 1b2pA 1b2vA 1b33N 1lb3aa 1b4fB 1b4vA 1bSea 1b63a 1b67a
1b77A 1b79A 1b7yB 1b93A 1b9gA 1bad 1bag 1bblC 1bd0a 1bd7A
1bdo 1be3A lbeg 1behB 1benB ibfg 1bgf 1bk0 1bk7A 1bkE
1bkra 1ble 1bmOA 1bm4A 1bm8 1bmghA 1bmtA lbor 1bouA 1bp7A
1bs4a 1bsmA 1bvpl 1bwzA 1bx4a 1bxaa 1byia 1byqa 1byra 1c06A
lc24A ic25 lc3ma lcdazAa le8zA lcbn lcby lce8A lcedA lcem
lcex icfe lcth 1chd lcipA 1cjdB 1clh lcm5A lenzA lcoda
lcola icozA lcg3a lcsh lcsn letf lctga lcw5A 1cwRA 1cySA
icyo lczfA 1d0ba ldira 1d2eA 1d3bE 1d3vA 1d6gA 1d7pM ldciA
1ddsa 1ddsa 1devB 1ldfea 1ldfna 1dfup 1dgiz2 1éhn 1djsa 1dlxAa
1dmzA ldoza 1dpsD ldpta 1dxgA leaiC lebdC leciB lecmh lecraA
lefvB lehs leuhA levha lextB 1fc2C 1fct 1fipaA 1£f1ev 1fre
1fua 1furA 1fvka 1fvl 1lgdoB lguxB 1gwd 1lgyfa 1h2rL 1h2rs
1hera 1hfe 1hfel 1hfes 1hfi 1hiws 1hmjA thoe 1hpy 1hqi
lhtrp lhuua lhwtH lhxn licfI lido lifc 1iiba liieA lixh
1jdw 1ihgA 1jsuC 1lkapP 1kdxa 1khmA 1kifa ikjs lknyA 1kpf
1kptA 1llata 11lba 11lbeB 1lghB 11kka 1lkta 11xta 1lyp 1maba
ImfmA 1mhd@A 1mkaA imknA mml ImnmA lmof 1mog 1nrj 1lmroB
Imsc Imsi 1msk imtyG imun Imut 1nkd 1nkl 1nls 1lnox
1npoC lnre InseA 1nxb loaa lopd lorc lospO lotha lovaA
1p35B lpcfa 1lpdo 1peh 1pfo 1phf 1pmc lpne lpoa 1poiA
lppn lpprM lppt lpsm lptg lpty 1lpuc 1lpyaa lga5A lgaua
1gb2A 1gb7a 1lgbha 1lgc7A lqdda 1gdlB lgexA 1qgfgB 1ghda 1gh5a
1ghB8a 1ghfa 1ghkaA 1ghvA 1qipa lgj2c 1gj4a 1gkfa lgkla 1gtaC
lglma JgovH lgovA 1lgpéA lga8A lgghA lggta 1grOA lgreA 1grvB
lgslA 1gsaa lgsta lqvai 1r2ah 1lrad lrgeA irie 1rl6a 1roo
lrsy 1rvvl 1rzl lseiA 1sfp 1sgpI 1sknP 1smpl 1stu 1svfA
itlda ltac ltbaa iltfe lthv 1tkaA 1tl2a 1tml ltmzA itpn
itrla letba 1tx4Aa lu%ah luae lubpA luby lugiD lunka luteA
lutg 1lvce lviya 1vhh 1vid 1vii lvns lvpc 1vpu 1whi
1xxaB lvaca lyagG lycec lyegA lytha 1ytfB 1yt fC 1lyvel 1zpdA
1lzto 256bA 2a3da 2abd 2bbkL 2bpr 2¢ba 2chsA 2¢cpgh 2end
2erl 2fmtA 2gp8A 2hgf 2hhma 2hp8 2igd 2ilk 23hbA 21isA
2napA 20ccH 2por 2pspA 2pth 2pvbA 2rn2 2sicT 2spcA 2tbd
2tnfAa 2tysB 2vgh 3bbg 3btoa 3chbD 3cla 3cyr 3daaA 3ezmA
3fib 3gcc 3lzt 3pte 3pvia 3sil 3vub deugA 4mt2 4pah
4pgah ShpgA 5pti 6gSVA 6pfkA 7a3hA Jatja 7rsa Babp 8rucl
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Table 2A. PDB ID of the set of protein structures used in the computation of the coverage-error plot (Figure 6)

1191 1531 19hcA la02F la02N lafaA Ia0fA la0tp lal5B lal7
lalw la2pA lazzA la32 1adiB ladmA IadpA las3 lasr la65a
latbB labs la79A la7vAa la8e la8rA Ia%nA ladv lacéA lacp
ladoA ladr lads laelB lafra lag4 lagja lahl 1ah8 laisB
laj2 lakr lal3 lalvA laly lamf Iamp lamx lanf laocA
laoiD laoiE laoiF laoig laojA JaoxA laoy laozA lap0 lapg
lapyA laqg0A lag5a lagb lage lagr lagzB larv lash latg
latlA latx latzA laub lauoA laug IauuA lavaC lavgl lavoA
lavpA lavgA lavyA laweB lawj lawz Taxh layfA layj layoA
lazeA lazh lazsa 1b00A 1b0uA 1b16a 1blcA 1b22A 1b2nB 1b33A
1b34A ib35A 1b35C 1b3kA 1b3tA 1b3uA Ib5qga 1b5tB 1b64 1b66A
1b6cB ibbe 1b71A 1b72B 1b7fA 1b874 Ib8BoA 1b8wA 1b94Aa 1b%hA
1b9uA 1b9wA Ibab 1babB 1baj I1bak 1bazA 1bb8 1bba 1bbhA
1bbpA 1bbzE 1bc8cC 1bcpB 1bcpD 1bcpF 1bd3A 1bd8 1bdmB 1bdyA
1bel ibe3C 1be3D 1be3F 1be3G 1be3H lbe3J 1be9A Ibea 1bebA
lbefA 1bf0 1bf4A 1bf6A Ibfra 1bftA 1bg2 1bgvA 1bh%A 1bh9B
1bhe 1bhgA 1bhi 1b37 1bk5A 1bkzA 1b10A 1b11 1bmga 1bmy
1bnb 1bnxA 1bo4a 1boeA 1bouB 1bpoA 1bpya 1bgcA 1bghG Ibgk
1bgsa ibgv 1broA 1br9 lbrt 1bs0A 1bs9 ibt7 1btn 1bu2A
1bu7Aa 1bueld 1bupA 1bvb 1bvoA 1bvyF 1bwd 1bw5 1bw6A 1bw9A
1bx7 1bxwA I1bxyA 1byb 1byeA 1byfa 1byka 1byla 1bywA 1bzbA
1bzg ic02a IclaA 1c1iA 1clyB 1c20A 1lc2aA lc3d lc3ga ic3zA
IcdeA ich52 Ich8A lcch 1ccvA lcczA lcdilA lcdca lcelA lcewl
1cf7A I1cf7B lcf9a lcfr lcg2a 1cg8B Icgo Jchéa lchmA 1ci3M
lcjgA icjwa Ick9a lckaA 1ckmAa IcktA 1cl4A lciga IcliA 1cmbA
IcmoA lcmr IcnoA lcnt3 lenv IcokA 1lcoo lcouA lecp2A Icpg
lcpzA Ilcgka lcggh leagyvA lerb lesel lcsya Icuna Icur lev8
lexe lexzB leyda lecyx lcz1A lczdA lczpA 1d1dAa 1d2fA 1d2nA
1d2zA 1d2zB 1d3bL 1d3cA 1d4aa 1ddba 1d4vB 1d66A 1d7uA 148bA
1d9cB 1doyA ldabA 1dbga 1dbwB 1dcgA 1ddf ldec ldelA 1dfjI
ldfoB 1dgva 1dgwA 1dgwx ldhr idiic 1dipA 1d1fH 1d1fL 1dmd
1dmuA idokA ldosA 1dpe 1dpgA 1dun 1dupA 1dynA le2aA leal
leayC lecd leceA lecpA ledg ledmB ledt leerA leerB legaA
legeA legr leh2 Jleit lepaA lerd lerp lerv lery Jesc
leur lexh 1fada 1fas 1faxI, 1fedA 1fedC 1fce 1fdm 1fgjA
1flel 1flp 1£f1ty 1£fmb 1fna 1fppB 1fsb 1ftia 1ftra 1fus
1fvpA 1fxd 1fzcA 1g31A lgca lgcf 1gd10 lgdhA 1ghk 1gks
lgky igl10 lgotB lgotG 1gp2G lgpc 1gpeA lgphl lgpr 1gpt
lgpx 1lgseA Igvp lhce lhcna 1hcnB 1hdj 1hkbA 1hlb 1hloB
lhmt ihnr lhrzA 1hsbB lhsta 1lhtp 1hula 1hymA 1hyp 1116
liab liaka liakB lica lidaA 1ihfB 1ihvA 1ilr2 1isuA 1itbB
1ithA 11ixxB ljer 1jetA 1jfra 15kma 1711 171yA 1jmecA 1jrhi
1junA 1jvr lkacB 1kb5B 1kevA 1kigT lkoe 1kp6A lkte 1kuh
lkwaA 1kzuB 1lab 1lel 1lea 11fb 11fda 11ghA 11ki 11mbd
Iloud 11lpbA 1irv 1Ilxa Imai Imba 1mde ImdyA Imek ImfiA
ImgtA ImhlA Imjec 1mnmC 1ImolA 1mpgA 1mpyA ImroC ImsfC 1mspA
1mtx imtyB ImtyD 1mup Inar 1nbcA lncs lncu 1lndds IndoB
Ineb ineg Infik 1lnglA 1lngr InksA 1nmtA 1npdA Inpk insj
InwpA inzyB lobpA lobr lobwa 1ofgA lohk lomb lonc lopc
lopr lordA losa lotcA lotcB lotfA lotgl JounA loxa Ipba
Ipbv Ipde 1pdkB Ipea IpfiA 1pfsA 1pft 1phnA 1pht IpicA
1pij ipjcA Iplc 1pls 1pluA 1pmi 1pnbA 1pnkA lponB Ipot
lpsf IpsrA Ipud IpytA lgabA 1ga7A lgaxB 1ghbiC IlgcxA IgdlA
lgeyA 1gf9A 1gfda 1gfha 1gg3A 1gghA 1ggiA 1ggoA 1qj8A 1gjda
1gjkA igjoA 1gk6A 1gk74 1gk9A 1gksA 1qlaB 1glbA 1qlep 1gloA
lgmhB 1go0E 1go3D 1go6A 1gora 1gpoA 1gg2A 1gqg4A lqgpl lggp2
lagp3 1ggrB lgr4a lgriB lgrga lqrra lgsdAa 1gsfD 1gsgA IgsmA
lgtsa 1gtwA IgquocC lquyB Iquua lgvp 1rlbA 1r2fB 1rée9 Irch
lrcf lregyY lres 1rip 1rkd irlw 1rmg 1rmvA lrrpB IsacA
1sbp 1sciB 1scy lsek lsemB 1sfecD 1sfcF 1sfcI 1sfcK IshcA
1sis iskf 1s1tB lsmeA lsmta ispf lsra 1sro lsrrA IstfI
lstmA isur 1svEiB 1svpA 1tafA ltaftB 1taxA 1te3C ltca lten
1tf4Aa itfi I1tgoa 1tgsI 1tgxA 1tib 1tif 1tig 1tiip Itit
1tkiA itifa Itmy 1tnt ItoaA 1tphl ltsg I1tsk Itud Itul
1tupA 1tvdAa 1tvxB Ityfa 1ulfA lubpB JurnA JuroA lveaA JvebA
lvebC IvdfA Ivie 1vih 1vls lvpsB lvsrAa Ivtx 1wab 1wapB
IwdcB 1wdna Iwho 1whtA Iwit 1wkt IwwcA 1xbrB 1xdtR IxikA
1xnb Ixsm IxvaA lyagA lyaiC 1lyprA 1lystL IyujA lzagB 1lzap
lzag 1zfd 1zmeC 2a0b 2a93A 2a93B 2aaiB 2abk 2acy 2adx
2af8 2afpA 2ahjp 2alcA 2arcB 2awl 2ayh 2baa 2bb8 2bbkH
2bby 2bds 2biéH ZbjxA 2bopA 2bosA Zbpal 2bpa2 2brz 2cblA
2ceyA 2¢cpkE 2cte 2eyp 2dorA 2dri 2drpD 2eboA 2ercA 2ezi
2ezl 2ezzA 2fapB 2fcpA 2fivA 2fmr 2fnbA 2fxb 2gdm 2gmfA
2gsaA 2hbg 2hddB 2hfh 2hmzA 2hsp 2il1b 2ifo 2irfG 2itg
2kaiA 2knt 2lefa 2liv 2mem 2mshbB 2mtaC 2myr 2nacA 2nbtA
2ncm Z2new 2nlrA 2nmbA 2nsyA 20atA 20ccA 2occC 2occh 20ccE
20ccF 2occG 2o0ccT 2occd 2occK 2occL 2o0ccM 2omf 2pii 2plc
2ptl 2qwc 2sak 2sas 2sCcpA 2scuB 2shl 2sn3 2sns 2stv
2tbvC 2tgi 2tmdA 2tpsA 2trxA 2ula 2u2fA 2xbd 3bama 3chy
3erd 3dapA 3dfr 3gcb 31hba 3ncmA 3pcgA 3pvaA 3sdha 3stda
3tdt 3thiA 3tmkD 451c 4cpal derxA 4kbpA 4sbvC 4sgbI dtgf
dxis Shck 5ich S5nul Sptd StmpA écel 6mhtA 6paxA 6prcC
7fd1A 8prkA IwgaA
Dataset of predicted models (Table 3A, Appendix) Acknowledgements

Models were downloaded from the CASP web site at: http://pre-
dictioncenter.llnl.gov/casp3/Casp3.html.
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Table 3A. Set of CASP3 models used to compare the different evaluation methods.

TO0043AL009_1
TO043AL143_1
TO0437TS035_1
T0044AL019_1
TO044AL168_1
T004475217_1
TO053AL061_1
TO053AL176_1
TO053TS072_1
TO056AL040_1
TOO56AL273_1
TO056TS163_1
TO0S57AL066_1_1
TO057TS072_1
TOO59AL061_1
TOO59AL166_1
TO058TS045_1
TO061AL003_1
TO061AL168_1
TO061TS072_1
TOQ63AL028_1
TO063AL156_1
TO063TS045_1
TO067AL028_1
TO067AL147_1
TOO67TS06I_1
TO068AL028_1
TO068AL147_1
TO068TS005_1
TOO71AL003_1
TO071AL162_1
TOO071TS045_1_1
TOO75AL076_1
TO075AL273_1
7007578190 1
TO077AL040_1
TOO77AL168_1
TO077TS045_1
TOO079AL017_1
TO079AL0S0_1
TOO79AL273_1
TO079TS105_1
TOO80ALO17_1
TOO080AL090_1
TQO81ALO0S_1
TO081AL166_1
TO081TS045_1
TO083AL028 1
TO083T5009_1
TO085AL017_1
TO085AL162_1
TOO85TSO0S_1

TO043AL033_1
TO043AL166_1
TOR43TS045_1
TO044AL0O28_1
TOO44ALI76_1
TO044TS224_1
TOOG53AL074_1
TO053AL201_1
T0053TS217_1
TO056AL0O76_1
TO056TS005_1
TO056TS185_1
TO057AL0O76_1
TOO57TS136_1
TOO59AL0O66_1
TO059AL168_1
T0059TS053_1
TO061AL009_1
TO061ALI76_1
T0061TSI05_1
POO63AL040_1
TO063AL168 1
T0O63TS061_1
TO067AL033_1
TO067ALI56_1
TO067TS072_1
TO068AL040_1
TO0068AL162_1
T0068TS009_1
TO071ALO0Y_1
TQ071AL166_1
T007175217_1
TOO75ALI43_1
TOO75TS005_1
T007518217_1
TO077AL061_1
TQO77AL176_1
TOO77TS061_1
TOQ79AL019_ 11
TOO79AL156_1_1
TO079TS005_1
TO079TS2156_1
TOQO80ALO19_1_1
TOO80AL147_1
TQQ81ALO19_1
TO081AL176_1
T0081TS061_1
TO083AL0O33_1
TO083TS035_1
TOO85AL019_1_1
TOO85AL166_1
TOO85TS045_1

TO043AL040_1_1
TO043AL168_1
T0043TS061_1
TO044AL033_1
TO044AL201_1
TO053AL003_1
T0053AL076_1_1
TOO53AL212_1
T005375224_1
TO056AL08S5_1
TO056TS009_1
TO056TS190_1
TO057AL168_1
TO05775217_1
TO059AL074_1
TO059AL201_1
TO059TS061_1
TO061AL019_1
TO061AL261_1
TO061TS185_1
TO063AL061_1
TO063AL176_1
TO063TS072_1
TO067AL040_1
TOO67AL166_1
TO067TS105_1
TOO68AL061_1
TO068AL1E6_1
TO068TS028_1
TOO71AL019_1_1
TOO71AL168_1
T0071TS224_1
TO075AL147_1
TO075TS035_1
T0075T$224_1
TOO77ALO74_1
TOO77AL201_1
TOO77TS072_1
TOO79ALOZE_1
TOO79AL166_1
T0079TS069_1
TOO79TS163_1
TOO80AL028_1
TOOS0ALI68_1
TOO8IALO28_1
T0081AL201_1
T0081TS105_1
TO083AL040_1
T0083TS045_1
TO085AL028_1
T0085AL168, 1_1
T0085TS061_1_1

TO043AL061_1
TO043AL176_1
TP043TS105_1
TO044AL040_1
T0044TS005_1
TOO53AL009_1
TOO53ALO90_1
TOO53AL273_1
TOOS6ALO03_1
TOO56AL142_1
T0056TS023_1
TEO56TS217_1
TOO57AL201_1
TOO59AL003_1
TOO59ALO76_1
TO059AL222_1
TOO59TS072_1
TO061ALO28_1
TOO61AL273_1
TO061TS190_1

TOO63AL201_1
TOO63TS163_1
TOO67ALO61_1
TOO67AL168_1
TO067TS217_1
TOO68ALO66_1
TOO68AL168_1
TOO68TS061_1
TOO71AL040_1
TOO71AL212_1
TOO75AL019_1
TOO75AL156_1
TOO75TS045_1
TOO77ALO0OY_1
TOO77AL142_1
POO77AL212_1
TO077TS105_1
TOO79ALO40_1
TO079AL168_1
POO79TS023_1
TOO79TS185_1
TOOB0AL033_1
TOOB0AL201_1
TO081ALO40_1
T0081AL212_1
T0081TS217_1
TOO83AL061_1
TO0B3TS061_1

TO085AL176_1
T0085TS085_1

TO063AL066_1_1

TOOB5AL061_I_1

TO043AL066_1
TO043AL201_1
TO043TS156_1
TOO44AL061_1_1
TO044TS009_1
TOO53AL017_1
TOO53AL147_1
TO053TS005_1
TOO56ALO0S_1
TOO56AL147_1
TO056TS035_1
TOCS7AL00S9_1
TO057AL222_ 1
TOC59AL009_1
TO059AL085_1
TO059AL273_1
T0059TS163 1
TO061AL0O33_1
T0061TS009_1
TO061TS217_1
TO063ALO74_1
TQO063AL212_1
T0063TS224_1
TO067ALO66_1
TO067AL273_1
T0067T5224_1
TOP68AL076_1
TO068BAL176_1
TO068TS072_1
TOO071AL066_1_1
TO071AL273_1
TO075AL028_1
TO075AL162_1
TO0075TS061_1
TO077AL017_1
TO077AL143_1
TOQ77AL273_1
TOO77TS163_1
TO079AL061_1
TO079AL176_1
TO079TS035_1
TO079TS180_1
TOOB0ALO61_1
TOO80AL273_1
TO081ALO61 1
TOCBIAL273_1
T0081TS224 1
TO083AL176_1
TO083TSG72_1
TOO85AL066_1_1
TO085AL222 1
TQ085TS105_1

TO043AL074_1
TO043T5005_1
T004375217_1
T0044AL074_1
T004475045_1
TOO53AL019_1_1
TOO53AL162_1
T00537S009_1
T0056AL017_1
TO056AL166_1
TOO56TS061_1
TOO57ALO17_1
TOO57AL273_1
TO059AL019_1
TOO59AL090_1
TOO59TS005_1
TOO59TS190_1
TOO61ALO40_1
TOO61TS035_1
TOO61TS224_1
TO063ALOS0_1
T0063TS005_1
TOO67ALO0Y_1
TOO67ALO74_1
TOO67TS005_1
TO068ALOOY_1
TOO68ALOSS5_1
TOO68AL201_1
T0068TS074_1
TO71ALO90_1
T0071TS005_1_1
TOO75ALO40_1
TOO75AL166_1
T0O75TSO72_1
T0077ALO19_1_1
T0O77AL147_1
T0077TS005_1
T0077TS190_1
T0O79ALO66_1
T0O79AL201_1
T0O79TS045_1
T0079T$217_1
T0080ALOTA_1
T0080TS009_1
T0081ALO74_1
T0O81TSO05_1
T0O83ALO0S_1
TOO83AL201_1
T00837S190_1
T0085AL076_1
TO085AL257_1

TOO43AL076_1
T0043TS009_1
TQO44ALO0I_1
TOO44AL0O76_1
T0O44TS061_1_1
TOO53AL028_1
TOO53AL166_1
TOO53TS045_1
TOO56AL019_1
TOO56AL168_1
TOO56TS072_1
TOO57AL.019_1
T0057TS009_1
TOO59AL028_T
TOO59AL142_1
TO059TS009_1
T0059TS217_1
TOO61ALO61_1
TOO61TS045_1
TOO63AL00Y_1
TO063AL143_1
TO063TS009_1
TOO67ALO17_1
TOO67ALO8S_1
TOO67TSO09_1
TO068ALO17_1
TOO68ALOIO_1T
TOO68AL212_1
TO068TS217_1
T0071AL142_1
PEO7ITSO09_1
TO075AL061_1
TOO75AL168_1
TGO75TS156_1
TGO77AL028_1
TGO77AL156_1
TO077TS009_1
TR0777S217_1
TEO7IALOTE_1
T0079AL212_1
T0079TS061_1
T0079T5224_1
TOOBOALOT76_1
TGO80TS045_1
TPO81ALO76_1
TEO81TS009_1
TOO83AL017_1
TOO83AL273_1
T0083TS224_1
TOOB5ALOBS_1
TOO85AL273_1

TO043AL0S0_1
TO043T5023_1
TO044AL017_1
TO044AL156_1
TO044TS136_1
TOO53AL033_1
TO053AL168_1
TO053TS061_1
TOO56AL028._1
TO056AL201_1
TO056TS105_1
TO057AL061_1
TO05778061_1
TO059ALO40_1
TOO59AL162_1
TO059TS035_1
TO059TS224_1
TO061ALO76_1
TO061TS061_1
PO063AL01S_1
POO63ALI47_1
TO063TS035_1
TOP67ALO1S_1
TO067AL142_1
TO067TS045_1
TOOEBALOLS_ 1
TOO68AL143 1
TO068AL222_1
TO068TS224_1
TO071AL147_1
TO071TS035_1
TOO75AL066_1
TOO75AL201_1
TOO75TS163_1
TOO77ALO33_1
TOO77ALIE6_1
TOO77TS035_1
TOO79ALO0S_1
TO079ALOBS_1
TOO79AL222_1
POOTITSO72_1
TOOB0ALOOS_1
TO080ALO8BS_1
POOBOTSO61_1
TOOIALOIO_1
POOBITS35_1
TOO83ALOIS_1
TOOBITSO05_1
POOBSALOOS_1
TOO85ALI42_1
TO085TS005_1

Models are available at http://predictioncenter.11nl.gov/casp3/Casp3.html

for their help in setting up the MAMMOTH server, and Federico
Gago for carefully reading the manuscript.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.
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