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ABSTRACT

Recently, very deep neural networks set new records across many application do-
mains, like Residual Networks at the ImageNet challenge and Highway Networks
at language processing tasks. We expect further excellent performance improve-
ments in different fields from these very deep networks. However these networks
are still poorly understood, especially since they rely on non-standard architec-
tures.

In this contribution we analyze the learning dynamics which are required for suc-
cessfully training very deep neural networks. For the analysis we use a symplectic
network architecture which inherently conserves volume when mapping a repre-
sentation from one to the next layer. Therefore it avoids the vanishing gradient
problem, which in turn allows to effectively train thousands of layers. We con-
sider highway and residual networks as well as the LSTM model, all of which
have approximately volume conserving mappings.

We identified two important factors for making deep architectures working: (1)
(near) volume conserving mappings through x = x+f(x) or similar (cf. avoiding
the vanishing gradient); (2) Controlling the drift effect, which increases/decreases
x during propagation toward the output (cf. avoiding bias shifts);

1 INTRODUCTION

Since its inception, the field of deep learning has sought out architectures that can effectively learn
many layers of hidden representation. In doing so, it has pushed the state of the art in many applica-
tion domains. It seems like an increase in performance often goes hand in hand with an increase in
the amount of layers that networks have. Within the field of computer vision for example, the pres-
tigious ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015)
has been won by deep convolutional networks every year since 2012. While the AlexNet architec-
ture of 2012 featured 8 hidden layers (Krizhevsky et al., 2012), the winning network of 2014 had
22 layers (Simonyan & Zisserman, 2015) and the ILSVRC 2015 was eventually won by a 152 layer
network (He et al., 2015). In a similar vain, the recently introduced Highway Networks (Srivastava
et al., 2015) show a lot of promise, not only in vision but also in language tasks (Jozefowicz et al.,
2016).

2 COMMON FEATURES OF VERY DEEP NEURAL NETWORKS

Deeper networks can in principle be constructed without changing the network architecture at all,
by using very careful initialization schemes (Saxe et al., 2014) or by learning to mimic a shallower
teacher network (Romero et al., 2015). However the most successful very deep networks all used
specialized architectures to obtain state of the art results, with Highway and Residual Networks
being two of the most prominent examples of this.
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Highway networks (Srivastava et al., 2015) employ a gating mechanism and apply the following
transformation in each layer

y = (1− g(x)) · x+ g(x) · f(x)
≈ x+ f(x)

where g is a gating function that decides whether the network transforms the inputs x via a non-
linearity f or just copies it to produce the output y. The second line is an approximation that holds
true at the beginning of learning if the recommended initialization procedure is followed.

ResNet are based on the idea that layers can be grouped into blocks which should learn a modifica-
tion that is added to the block’s input, instead of fully replacing that input. Thus, the transformation
performed by such a block is

y = x+ f(x)

The f used in a ResNet is typically a two- or more hidden layer neural network, typically employed
in a convolutional setting.

Additionally, recurrent networks such as the Long Short-Term Memory network (LSTM) Hochreiter
& Schmidhuber (1997) result in very deep neural networks when unrolled in time. LSTMs are
networks where each neuron can store information. Read, write and delete access to this information
is controlled via gates. The information at time-step t is calculated as

xt = xt−1 + f(zt)

where the subscript denotes time-steps and z is the input to the neuron after it has passed the input
gate. This information could later potentially be modified via a delete gate.

What all of these architectures have in common is that the function to transform the layer input x to
an output y is a variant of the equation

y = x+ f(x) (1)

In the following we will see how, with an appropriate choice of f , this yields a volume conserving
transformation in subsection 2.1 which avoids the vanishing gradient (Hochreiter, 1991; Hochreiter
et al., 2001). To analyze the behavior of these networks, we use a network architecture first intro-
duced by Deco & Brauer (1995) which guarantees volume conservation (introduced in the same
subsection). However, Equation (1) can also lead to unwanted drift effects as described in subsec-
tion 2.2.

2.1 VOLUME CONSERVATION

Training very deep networks is not a trivial task. It has been known for a long time that vanishing
gradients makes training these networks difficult. It can be shown that the gradient flow through a
neural network diminishes as the number of layers increases. One interesting way of looking at the
vanishing gradient problem is from an information-theoretic point of view (Hochreiter, 1998): let h
be a (bijective) mapping that transforms a layer’s input x into an output y. If we consider Y and X
as random variables that are connected via

Y = h(X)

Then we know from basic information theory that the entropyH between these variables behaves as

H(Y ) ≤ H(X) + E
(
log

∣∣∣∣ ∂Y∂X
∣∣∣∣)

Where E denotes the expectation of a random variable and
∣∣ ∂Y
∂X

∣∣ is the determinant of the Jacobian
of the mapping h. Whenever this determinant is smaller than 1, information will be lost in the
transformation, and we will observe vanishing gradients. Thus, the key to make learning feasible
over many layers is to ensure that the mapping is volume conserving/symplectic, i.e., that∣∣∣∣ ∂Y∂X

∣∣∣∣ = 1
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This insight was exploited by Deco & Brauer (1995) to build a network for Independent Component
Analysis that is volume conserving by design. By constructing a Jacobian ∂Y

∂X that has upper (or
lower) triagonal form with ones on the diagonal. Concretely, the ith node of a layer in the Deco &
Brauer architecture calculates

yi = xi + f(xi) = xi + f

 ∑
j∈I(i)

wijxj + bi


Where wij is the connection strength from input xj to output yi and bi is a bias unit.

The crucial trick in this design is that the summation index j only goes over all indices that are larger
(smaller) than i, depending on whether the Jacobian should be upper or lower diagonal. That is to
say

I(i) =
{
{j|j < i} for layers with upper triangular Jacobians
{j|j > i} for layers with lower triangular Jacobians

Note that this architecture implicitly assumes that each layer has the same number of hidden units.

If we stack multiple of these layers and connect them with a softmax, sigmoid or linear output unit
on top, we obtain what we will refer to as a Deep Volume Conserving Neural Network (DVCNN).
An example of such an architecture can be seen in Figure 4. These networks can be trained to
perform classification or regression using conventional neural network optimization techniques such
as stochastic gradient descent.

Srivastava et al. (2015) suggests to initialize Highway Networks in a way that all gates start out in
a closed state, setting the layers to copy their input. In that case, the mapping function becomes
y = x, and thus |∂f∂x | = 1 trivially holds. This may later change during training, but it ensures that
gradients can flow at the beginning of training, where avoiding vanishing gradients is most crucial.

Just like DVCNNs, ResNets mapping has the form y = x + f(x). While it cannot be guaranteed
that a ResNet is fully volume conserving, it is very close to that. This is because the convolutional
structure of f implies that its Jacobian only has very few non-diagonal entries (i.e., it is sparse), even
though not completely triagonal. This means that

∂y

∂x
= I +

∂f

∂x

Assuming the weights are initialized sensibly, we can assume that ∂f∂x is sparse, its eigenvalues are
relatively small as well, since a sparse matrix has a smaller frobenius norm than a dense matrix1. As
the Frobenius norm is an upper bound to the spectral norm, this guarantees that the largest eigenvalue
is relatively small, and thus the determinant of the Jacobian is close to 1.

2.2 DRIFT EFFECTS

The non-linearities employed in DVCNNs are h(x) = x+ f(x). If f is a non-negative function, as
is the case with sigmoids and ReLUs, the activations will increase throughout the layers, leaving the
upper layers at very high activations. While this is not a big problem when there are only a small
number of layers, this severely affects deeper networks. Even with a small number of layers this can
slow down learning due to a bias shift (Clevert et al., 2015). When using an unbounded function like
the ReLU, drift effects can become very severe and make learning highly unstable. With bounded
function such as a sigmoid, it will result in activations that are saturated in the higher layers, which
makes learning in those layers more difficult.

This problem was first described as “internal state drift” in the original LSTM publica-
tion (Hochreiter & Schmidhuber, 1997): each time-step the state inside each LSTM cell is updated
by an equation of the form xt = xt−1 + f(zt), which can lead to cells that drift away over time.
This effect was ameliorated with the introduction of forget gates, but is still observable under certain
conditions. For highway networks, this is not an issue, since the output of a layer is always a convex
combination of the input and the transformation, making it unlikely that the end result is bigger than

1assuming entries of similar size
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the input. ResNets make use of Batch-Normalization (Ioffe & Szegedy, 2015) to make sure that the
state does not drift over time. For DVCNNs, the drift effect leads to interesting dynamics, which are
explored more deeply in section 3.

3 EXPERIMENTAL RESULTS

The DVCNN is a simple model that can easily encode hundreds of layers. This makes it a suitable
model to study the effects of very deep networks. We trained the DVCNN on the MNIST-bg-img
variation of the MNIST digit recognition data-set from Larochelle et al. (2007), where the black
background was exchanged with image patches. This data-set consists of 10k training set images,
2k validation set images and 50k test set images, spread across 10 digit classes. Each image has a
resolution of 28x28 pixels. As the architecture requires that each hidden layer has as many units as
there are input features, each hidden layer had 784 hidden units. Training was done using stochastic
gradient descent on a GPU.

3.1 VANISHING GRADIENTS

As expected, a DVCNN can easily be trained even with hundreds or thousands of layers2, showing
no signs of vanishing gradients at all, as can be seen in Figure 1. In fact, deeper networks seemed to
reach a lower training error, which is likely due to their increased capacity.
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Figure 1: Training error of DVCNNs of different depth on MNIST bg-img. Even the very deep net-
works are able to effectively minimize the training objective without running into vanishing gradient
issues. All nets were trained using the same hyperparameters.

3.2 DRIFT EFFECTS

Using DVCNNs with ReLU activation functions immediately leads to numerical problems, and thus
could not be explored further. However, both sigmoid and tanh activations worked nicely. One
interesting observation is that a DVCNN would yield the best generalization performance when
these non-linearities were initialized in their saturating regime. This was done by initializing the
bias units to values such as ±2.

Figure 2 shows the average activation value across all units of a DVCNN with 100 layers that uses
a sigmoid activation function, once for an untrained network, and once after the network has con-
verged. One can immediately see that the untrained network suffers heavily from the drift effect,

2Our implementation ran out of GPU memory with more than 2 000 layers.
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with the average value increasing from 0 in the initial layer up to over 70 at the highest layer. After
the network has trained, the drift effect is still noticeable, but much less pronounced. The reason
for this is that the network has learned to push most non-linearities to zero, only activating certain
non-linearities when a given signal is presented, as shown in Figure 3.
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Figure 2: Average value of the non-linearity f across all units of each layers of a DVCNN using a
sigmoid function with the bias set to -2. Left: before learning has begun, Right: after the network
has converged.
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Figure 3: Distribution of the value of the non-linearity f across all units of each layers of a DVCNN
using a sigmoid function with the bias set to -2. Left: before learning has begun, Right: after the
network has converged.

4 DISCUSSION AND CONCLUSION

This work analyzed the properties of very deep networks, using a deep volume conserving neural
network model as a basis for our analysis. Thanks to their perfect volume conservation property,
this model allows us to analyze the behavior of very deep networks in the absence of vanishing
gradients. For example, it also allows us to very clearly observe the drift effect which is otherwise
hard to uncover in models like the LSTM or Residual Networks.

In the future, we intend to confirm our results using more advanced models like Highway or Residual
Networks. We would also like to refine the DVCNN model to make its performance more compet-
itive with regards to generalization performance. Currently, due to their superior learning behavior,
DVCNNs tend to overfit on the training data very quickly. One easy fix would be to restrict the
connectivity of the network: instead of connecting a unit to all inputs on its left/right, we connect it
only to the n nearest units on the left/right. This effectively reduces the complexity of the network
to fight overfitting. We also experimented with other forms of regularization such as dropout, but
first experiments were not as encouraging. To fight the effect of the drift effect, Batch Normalization
could be employed.
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A NETWORK STRUCTURE

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3 x

(0)
4

x
(1)
0 x

(1)
1

f

x
(1)
2

f

x
(1)
3

f

x
(1)
4

f

x
(2)
0

f

x
(2)
1

f

x
(2)
2

f

x
(2)
3

f

x
(2)
4

x
(3)
0 x

(3)
1

f

x
(3)
2

f

x
(3)
3

f

x
(3)
4

f

x
(4)
0

f

x
(4)
1

f

x
(4)
2

f

x
(4)
3

f

x
(4)
4

x
(1)
i = x

(0)
i + f

(∑
j>i w

(0)
ij x

(0)
j

)

x
(2)
i = x

(1)
i + f

(∑
j<i w

(1)
ij x

(1)
j

)

x
(3)
i = x

(2)
i + f

(∑
j>i w

(2)
ij x

(2)
j

)

x
(4)
i = x

(3)
i + f

(∑
j<i w

(3)
ij x

(3)
j

)

y1 y2 y3 yi =
exp
(∑

θikx
(4)
k +bi

)
∑

j exp
(∑

θjkx
(4)
k +bj

)

w
(0)
32 w

(0)
42

θ22 θ32

w(0)

w(1)

w(2)

w(3)

Figure 4: An example of a Deep Volume Conserving Network with four hidden layers and a softmax
output layer.
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